Math4230 Exercise 6 Solution

- 1. (a) $x \frac{\langle a, x \rangle b}{\|a\|^2} a$ (b) $\max\{x, 0\}$
- 2.

$$\begin{aligned} |P_C(x_1) - P_C(x_2)||^2 \\ &= \langle P_C(x_1) - x_2, P_C(x_1) - P_C(x_2) \rangle + \langle x_2 - P_C(x_2), P_C(x_1) - P_C(x_2) \rangle \\ &\leq \langle P_C(x_1) - x_2, P_C(x_1) - P_C(x_2) \rangle \\ &= \langle P_C(x_1) - x_1, P_C(x_1) - P_C(x_2) \rangle + \langle x_1 - x_2, P_C(x_1) - P_C(x_2) \rangle \\ &\leq \langle x_1 - x_2, P_C(x_1) - P_C(x_2) \rangle \end{aligned}$$

3. Since C is closed and $\overline{x} \notin C$, C and \overline{x} can be strictly separated by a hyperplane. Hence for some nonzero $a \in \mathbb{R}^n$ we have,

$$\langle a, x \rangle < \langle a, \overline{x} \rangle, \ \forall x \in C.$$

Suppose $\langle a, x' \rangle > 0$ for some $x' \in C$. Since C is a cone, $\lambda x \in C \ \forall \lambda > 0$. By choosing a large λ , we get a contradiction, since $\langle a, \lambda x' \rangle > \langle a, \overline{x} \rangle$. Hence $\langle a, x \rangle \leq 0, \ \forall x \in C$. Since C is a closed cone, $0 \in C$. We must have $\langle a, \overline{x} \rangle > 0$.

4. Since V is closed and $\overline{x} \notin V$, V and \overline{x} can be strictly separated by a hyperplane. Hence for some nonzero $a \in \mathbb{R}^n$ we have,

$$\langle a, x \rangle < \langle a, \overline{x} \rangle, \ \forall x \in V$$

Suppose $\langle a, x' \rangle \neq 0$ for some $x' \in V$. Since V is a subspace, $\lambda x \in V$ for all λ . We can choose λ such that $\langle a, \lambda x' \rangle > \langle a, \overline{x} \rangle$. Hence, we get a contradiction. Since V is a subspace, $0 \in V$. We must have $\langle a, \overline{x} \rangle > 0$.

5. When x > 0, y < 0, then $z = (x, y) \in \text{int } C$, hence $N(z; C) = \{0\}$. When x = 0, y < 0, then $N(z; C) = \{v_1, v_2 \mid v_1 \le 0, v_2 = 0\}$. When x > 0, y = 0, then $N(z; C) = \{v_1, v_2 \mid v_1 = 0, v_2 \ge 0\}$. When x = 0, y = 0, then $N(z; C) = \{v_1, v_2 \mid v_1 \le 0, v_2 \ge 0\}$.