Math4230 Exercise 6

- 1. Find the formula of $P_C(x)$ for the following sets C:
 - (a) $C = \{x \in \mathbb{R}^n | \langle a, x \rangle = b\}$, where $0 \neq a \in \mathbb{R}^n$, $b \in \mathbb{R}$. (b) $C = \mathbb{R}^n_+ := \{x \in \mathbb{R}^n | x_i \ge 0, \forall i\}$.
- 2. Let C be a nonempty closed convex set. Show that for all $x_1, x_2 \in \mathbb{R}^n$, $\|P_C(x_1) - P_C(x_2)\|^2 \leq \langle P_C(x_1) - P_C(x_2), x_1 - x_2 \rangle$
- 3. Let $C \subseteq \mathbb{R}^n$ be a nonempty closed, convex cone. Suppose $\overline{x} \notin C$. Show that there exists $0 \neq a \in \mathbb{R}^n$ such that

$$\langle a, x \rangle \leq 0 \ \forall x \in C, \text{ and } \langle a, \overline{x} \rangle > 0$$

4. Let V be a non trivial subspace of \mathbb{R}^n . Suppose $\overline{x} \notin V$. Show that there exists $0 \neq a \in \mathbb{R}^n$ such that

$$\langle a, x \rangle = 0 \ \forall x \in V, \text{ and } \langle a, \overline{x} \rangle > 0$$

5. Let $C = \{(x, y) \mid x \ge 0, y \le 0\}$. Compute the normal cone $N(\bar{x}; C)$ of C at every $\bar{x} \in C$.