Math4230 Exercise 5 Solution

- 1. $\operatorname{ri}(C) \subset \overline{C}$ since $\operatorname{ri}(C) \subset \overline{C}$. Conversely, suppose $x \in \overline{C}$. Let $\overline{x} \in \operatorname{ri}(C)$. Consider $x_k = \frac{1}{k}\overline{x} + (1 - \frac{1}{k})x$. By the line segment property, each $x_k \in \operatorname{ri}(C)$. Also, $x_k \to x$. Therefore, $x \in \operatorname{ri}(\overline{C})$.
- 2. We first prove that $\operatorname{ri}(C) = \operatorname{ri}(\overline{C})$. $\operatorname{ri}(C) \subset \operatorname{ri}(\overline{C})$ follows from the definition and the fact that $\operatorname{aff}(C) = \operatorname{aff}(\overline{C})$. (Try to show this) Conversely, suppose $x \in \operatorname{ri}(\overline{C})$. Suppose $\overline{x} \in \operatorname{ri}(C)$. (which exists since $\operatorname{ri}(C)$ is nonempty) We may assume $x \neq \overline{x}$. Then by Prolongation lemma, $y = x + \gamma(x - \overline{x}) \in \overline{C}$, for some $\gamma > 0$. Then $x = \frac{\gamma}{1+\gamma}\overline{x} + \frac{1}{1+\gamma}y$. By Line Segment Property, $x \in \operatorname{ri}(C)$. Now, since $\overline{C_1} = \overline{C_2}$, $\operatorname{ri}(\overline{C_1}) = \operatorname{ri}(\overline{C_2})$. Hence, $\operatorname{ri}(C_1) = \operatorname{ri}(C_2)$.
- 3. (a) $C_1 = \{(x, y) \mid 0 \le x \le 1, y = 0\}$ $C_2 = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\}$ (b) Let $x \in ri(C_1)$. Then there exists $\epsilon > 0$ such that $B(x, \epsilon) \cap aff(C_1) \subset C_1$
 - (b) Let $x \in \operatorname{ri}(C_1)$. Then there exists $\epsilon > 0$ such that $B(x, \epsilon) \cap \operatorname{aff}(C_1) \subset C_1$. But $\operatorname{aff}(C_1) = \operatorname{aff}(C_2)$. So $B(x, \epsilon) \cap \operatorname{aff}(C_2) \subset C_1 \subset C_2$. Hence $x \in \operatorname{ri}(C_2)$.
- 4. Let $x^* \in X^* \cap \operatorname{ri}(X)$. Let $x \in X$. By Prolongation lemma, $y = x^* + \gamma(x^* - x) \in X$. So $x^* = \frac{\gamma}{1+\gamma}x + \frac{1}{1+\gamma}y$. Since f is concave, we have $f(x^*) \geq -\frac{\gamma}{1+\gamma}f(x) + -\frac{1}{1+\gamma}f(x) \geq -\frac{\gamma}{1+\gamma}f(x^*) + -\frac{1}{1+\gamma}f(x^*)$

$$f(x^*) \ge \frac{\gamma}{1+\gamma} f(x) + \frac{1}{1+\gamma} f(y) \ge \frac{\gamma}{1+\gamma} f(x^*) + \frac{1}{1+\gamma} f(x^*) = f(x^*)$$

since $f(x) \ge f(x^*), f(y) \ge f(x^*).$

So we must have equality. In particular, $f(x) = f(x^*)$. This holds for any $x \in X$. Hence, f must be constant.