Math4230 Exercise 5 Solution

1. $\overline{\operatorname{ri}(C)} \subset \bar{C}$ since $\operatorname{ri}(C) \subset C$.

Conversely, suppose $x \in \bar{C}$.
Let $\bar{x} \in \operatorname{ri}(C)$. Consider $x_{k}=\frac{1}{k} \bar{x}+\left(1-\frac{1}{k}\right) x$.
By the line segment property, each $x_{k} \in \operatorname{ri}(C)$. Also, $x_{k} \rightarrow x$. Therefore, $x \in \overline{\operatorname{ri}(C)}$.
2. We first prove that $\operatorname{ri}(C)=\operatorname{ri}(\bar{C}) . \operatorname{ri}(C) \subset \operatorname{ri}(\bar{C})$ follows from the definition and the fact that aff $(C)=\operatorname{aff}(\bar{C})$.(Try to show this)
Conversely, suppose $x \in \operatorname{ri}(\bar{C})$. Suppose $\bar{x} \in \operatorname{ri}(C)$. (which exists since ri (C) is nonempty)
We may assume $x \neq \bar{x}$. Then by Prolongation lemma, $y=x+\gamma(x-\bar{x}) \in$ \bar{C}, for some $\gamma>0$.
Then $x=\frac{\gamma}{1+\gamma} \bar{x}+\frac{1}{1+\gamma} y$. By Line Segment Property, $x \in \operatorname{ri}(C)$.
Now, since $\overline{C_{1}}=\overline{C_{2}}, \operatorname{ri}\left(\overline{C_{1}}\right)=\operatorname{ri}\left(\overline{C_{2}}\right)$. Hence, $\operatorname{ri}\left(C_{1}\right)=\operatorname{ri}\left(C_{2}\right)$.
3. (a) $C_{1}=\{(x, y) \mid 0 \leq x \leq 1, y=0\}$
$C_{2}=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$
(b) Let $x \in \operatorname{ri}\left(C_{1}\right)$. Then there exists $\epsilon>0$ such that $B(x, \epsilon) \cap \operatorname{aff}\left(C_{1}\right) \subset$ C_{1}.
But aff $\left(C_{1}\right)=\operatorname{aff}\left(C_{2}\right)$. So $B(x, \epsilon) \cap \operatorname{aff}\left(C_{2}\right) \subset C_{1} \subset C_{2}$.
Hence $x \in \operatorname{ri}\left(C_{2}\right)$.
4. Let $x^{*} \in X^{*} \cap \operatorname{ri}(X)$. Let $x \in X$.

By Prolongation lemma, $y=x^{*}+\gamma\left(x^{*}-x\right) \in X$.
So $x^{*}=\frac{\gamma}{1+\gamma} x+\frac{1}{1+\gamma} y$. Since f is concave, we have
$f\left(x^{*}\right) \geq \frac{\gamma}{1+\gamma} f(x)+\frac{1}{1+\gamma} f(y) \geq \frac{\gamma}{1+\gamma} f\left(x^{*}\right)+\frac{1}{1+\gamma} f\left(x^{*}\right)=f\left(x^{*}\right)$
since $f(x) \geq f\left(x^{*}\right), f(y) \geq f\left(x^{*}\right)$.
So we must have equality. In particular, $f(x)=f\left(x^{*}\right)$. This holds for any $x \in X$. Hence, f must be constant.

