Math4230 Exercise 5

1. Let C be a nonempty convex set. Show that $\bar{C}=\overline{\operatorname{ri}(C)}$
2. Let C_{1}, C_{2} be convex sets with $\overline{C_{1}}=\overline{C_{2}}$. Show that $\mathrm{ri}\left(C_{1}\right)=\mathrm{ri}\left(C_{2}\right)$.
3. Suppose C_{1}, C_{2} are nonempty convex sets such that $C_{1} \subset C_{2}$.
(a) Give an example showing that ri $\left(C_{1}\right)$ may not be a subset of $\mathrm{ri}\left(C_{2}\right)$.
(b) Suppose aff $\left(C_{1}\right)=\operatorname{aff}\left(C_{2}\right)$. Show that ri $\left(C_{1}\right) \subset \operatorname{ri}\left(C_{2}\right)$.
4. Let X be a nonempty convex subset of \mathbb{R}^{n}, let $f: X \rightarrow \mathbb{R}$ be a concave function, let

$$
X^{*}:=\left\{x^{*} \in X \mid f\left(x^{*}\right)=\inf _{x \in X} f(x)\right\}
$$

Show that if there exist $x_{0} \in X^{*} \cap \operatorname{ri}(X)$, then f is constant.

