Math4230 Exercise 4 Solution

1. Suppose f is not constant. Then there exists x, y such that f(x) > f(y). Then for $\lambda \in (0, 1)$,

$$f(x) = f\left(\lambda \frac{x - (1 - \lambda)y}{\lambda} + (1 - \lambda)y\right) \le \lambda f\left(\frac{x - (1 - \lambda)y}{\lambda}\right) + (1 - \lambda)f(y)$$
So

$$f\left(\frac{x-(1-\lambda)y}{\lambda}\right) \ge \frac{f(x)-(1-\lambda)f(y)}{\lambda} = \frac{f(x)-f(y)}{\lambda} + f(y)$$

Since f(x) > f(y), this tends to ∞ as $\lambda \to 0^+$. This contradicts the fact that f is bounded. Hence, f is constant.

2. Note that $x_2 = \frac{x_3 - x_2}{x_3 - x_1} x_1 + \frac{x_2 - x_1}{x_3 - x_1} x_3$. Then by convexity of *f*, we have

$$f(x_2) \le \frac{x_3 - x_2}{x_3 - x_1} f(x_1) + \frac{x_2 - x_1}{x_3 - x_1} f(x_3)$$

Also,

$$f(x_2) = \frac{x_3 - x_2}{x_3 - x_1} f(x_2) + \frac{x_2 - x_1}{x_3 - x_1} f(x_2)$$

Hence,

$$\frac{x_3 - x_2}{x_3 - x_1}(f(x_2) - f(x_1)) \le \frac{x_2 - x_1}{x_3 - x_1}(f(x_3) - f(x_2))$$

Therefore,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

3. (a) Suppose f is quasiconvex. Let $x, y \in V_a, \lambda \in [0, 1]$.

$$f(\lambda x + (1 - \lambda)y) \max\{f(x), f(y)\} \le a$$

Hence, V_a is convex for all a.

- Suppose V_a is convex for all a. Let $\lambda \in [0, 1]$. Let $m := \max\{f(x), f(y)\}$. Then, $x, y \in V_m$. Since V_m is convex, $\lambda x + (1 - \lambda)y \in V_m$. So $f\lambda x + (1 - \lambda)y) \leq m$. Hence f is quasiconvex.
- (b) Since convexity implies V_a is convex for all a. A convex function is quasiconvex.

The converse is not true. Consider $f(x) = \ln x$.

4. Suppose all level sets of f are compact. Suppose $\{x_k\}$ is a sequence with $||x_k|| \to \infty$. Suppose $f(x_k) \not\to \infty$. Then there exists subsequence x_{k_j} such that $f(x_{k_j})$ is bounded by α for some α . Then $\{x_{k_j}\} \subset V_{\alpha}$. This contradicts the compactness of V_{α} . Hence, f is coercive. Conversely, suppose f is coercive. Suppose V_{α} is not compact for some α . Since f is continuous, V_{α} must be closed, this means V_{α} is not bounded. Hence, there exists a sequence $\{x_k\} \subset V_{\alpha}$ such that $||x_k|| \to \infty$. This contradicts the coercivity of f since $f(x_k) \leq \alpha$.