Math4230 Exercise 4 Solution

1. Suppose f is not constant. Then there exists x, y such that $f(x)>f(y)$. Then for $\lambda \in(0,1)$,

$$
f(x)=f\left(\lambda \frac{x-(1-\lambda) y}{\lambda}+(1-\lambda) y\right) \leq \lambda f\left(\frac{x-(1-\lambda) y}{\lambda}\right)+(1-\lambda) f(y)
$$

So

$$
f\left(\frac{x-(1-\lambda) y}{\lambda}\right) \geq \frac{f(x)-(1-\lambda) f(y)}{\lambda}=\frac{f(x)-f(y)}{\lambda}+f(y)
$$

Since $f(x)>f(y)$, this tends to ∞ as $\lambda \rightarrow 0^{+}$. This contradicts the fact that f is bounded. Hence, f is constant.
2. Note that $x_{2}=\frac{x_{3}-x_{2}}{x_{3}-x_{1}} x_{1}+\frac{x_{2}-x_{1}}{x_{3}-x_{1}} x_{3}$. Then by convexity of f, we have

$$
f\left(x_{2}\right) \leq \frac{x_{3}-x_{2}}{x_{3}-x_{1}} f\left(x_{1}\right)+\frac{x_{2}-x_{1}}{x_{3}-x_{1}} f\left(x_{3}\right)
$$

Also,

$$
f\left(x_{2}\right)=\frac{x_{3}-x_{2}}{x_{3}-x_{1}} f\left(x_{2}\right)+\frac{x_{2}-x_{1}}{x_{3}-x_{1}} f\left(x_{2}\right)
$$

Hence,

$$
\frac{x_{3}-x_{2}}{x_{3}-x_{1}}\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) \leq \frac{x_{2}-x_{1}}{x_{3}-x_{1}}\left(f\left(x_{3}\right)-f\left(x_{2}\right)\right)
$$

Therefore,

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}
$$

3. (a) Suppose f is quasiconvex.

Let $x, y \in V_{a}, \lambda \in[0,1]$.

$$
f(\lambda x+(1-\lambda) y) \max \{f(x), f(y)\} \leq a
$$

Hence, V_{a} is convex for all a.
Suppose V_{a} is convex for all a. Let $\lambda \in[0,1]$.
Let $m:=\max \{f(x), f(y)\}$. Then, $x, y \in V_{m}$.
Since V_{m} is convex, $\lambda x+(1-\lambda) y \in V_{m}$. So $\left.f \lambda x+(1-\lambda) y\right) \leq m$. Hence f is quasiconvex.
(b) Since convexity implies V_{a} is convex for all a. A convex function is quasiconvex.
The converse is not true. Consider $f(x)=\ln x$.
4. Suppose all level sets of f are compact. Suppose $\left\{x_{k}\right\}$ is a sequence with $\left\|x_{k}\right\| \rightarrow \infty$. Suppose $f\left(x_{k}\right) \nrightarrow \infty$. Then there exists subsequence $x_{k_{j}}$ such that $f\left(x_{k_{j}}\right)$ is bounded by α for some α. Then $\left\{x_{k_{j}}\right\} \subset V_{\alpha}$. This contradicts the compactness of V_{α}. Hence, f is coercive.
Conversely, suppose f is coercive. Suppose V_{α} is not compact for some α. Since f is continuous, V_{α} must be closed, this means V_{α} is not bounded. Hence, there exists a sequence $\left\{x_{k}\right\} \subset V_{\alpha}$ such that $\left\|x_{k}\right\| \rightarrow \infty$. This contradicts the coercivity of f since $f\left(x_{k}\right) \leq \alpha$.

