Math4230 Exercise 4

- 1. Suppose $f:\mathbb{R}^n\to\mathbb{R}$ is a bounded convex function. Show that f is constant.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function. Show that if $x_1 < x_2 < x_3$, then $\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_3) - f(x_2)}{x_3 - x_2}$
- 3. (a) A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is called *quasiconvex* if

 $f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}, \ \forall x, y, \ \lambda \in [0, 1]$

Show that a function is quasiconvex if and only if the level set $\{x | f(x) \leq a\}$ is convex for all $a \in \mathbb{R}$.

- (b) Show that every convex function is quasiconvex. Is the converse true?
- 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Show that the following are equivalent.
 - (a) All level sets of f are compact, i.e. $\{x | f(x) \le a\}$ is compact for all a.
 - (b) f is coercive, i.e. for all sequence $\{x_k\}$ with $||x_k|| \to \infty$, $f(x_k) \to \infty$