Math4230 Exercise 4

1. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a bounded convex function. Show that f is constant.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Show that if $x_{1}<x_{2}<x_{3}$, then

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}
$$

3. (a) A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is called quasiconvex if

$$
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}, \forall x, y, \lambda \in[0,1]
$$

Show that a function is quasiconvex if and only if the level set $\{x \mid f(x) \leq a\}$ is convex for all $a \in \mathbb{R}$.
(b) Show that every convex function is quasiconvex. Is the converse true?
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function. Show that the following are equivalent.
(a) All level sets of f are compact, i.e. $\{x \mid f(x) \leq a\}$ is compact for all a.
(b) f is coercive, i.e. for all sequence $\left\{x_{k}\right\}$ with $\left\|x_{k}\right\| \rightarrow \infty, f\left(x_{k}\right) \rightarrow \infty$

