Math4230 Exercise 3 Solution

1. Let $x, y \in C$, and let $\alpha \in [0, 1]$. Then

$$h(\alpha x + (1 - \alpha)y) = g(f(\alpha x + (1 - \alpha)y))$$

$$= g(f_1(\alpha x + (1 - \alpha)y), ..., f_m(\alpha x + (1 - \alpha)y))$$

$$\leq g(\alpha f_1(x) + (1 - \alpha)f_1(y), ..., \alpha f_m(x) + (1 - \alpha)f_m(y)$$

$$= g(\alpha (f_1(x), ..., f_m(x)) + (1 - \alpha)(f_1(y), ..., f_m(y)))$$

$$\leq \alpha g(f_1(x), ..., f_m(x)) + (1 - \alpha)g(f_1(y), ...f_m(y))$$

$$= \alpha g(f(x)) + (1 - \alpha)g(f(y))$$

$$= \alpha h(x) + (1 - \alpha)h(y)$$

- 2. (a) $z'\nabla^2 f_1(x)z = \frac{1}{(e^{x_1} + \ldots + e^{x_n})^2} \sum_{i=1}^n \sum_{j=1}^n e^{x_i + x_j} (z_i z_j)^2 \ge 0, \ \forall z \in \mathbb{R}^n.$ Hence the Hessian of f_1 is positive semidefinite at all $x \in \mathbb{R}^n$ and f_1 is convex.
 - (b) Let f(x) = ||x||, $g(t) = t^p$. Then use the result of (1).
 - (c) Let f(x) = x'Ax, $g(t) = e^t$. Then use the result of (1).
 - 3. a) We show that f is strongly convex iff

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2, \ \forall x, y$$

Suppose f is strongly convex. Consider g(t) = f(x + t(y - x)). Then $g'(t) = \langle \nabla f(x + t(y - x)), (y - x) \rangle$. Then

$$\begin{split} &f(y) - f(x) - \langle \nabla f(x), y - x \rangle \\ &= g(1) - g(0) - \langle \nabla f(x), y - x \rangle \\ &= \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle - \langle \nabla f(x), y - x \rangle dt \\ &= \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle dt \\ &\geq \int_0^1 \alpha t ||y - x||^2 dt \\ &= \frac{\alpha}{2} ||y - x||^2 \end{split}$$

The other direction is simple.

For $x \neq y$, $||y = x|| \neq 0$. Hence, the above shows that f is strictly convex if f is strongly convex.

b) Consider $g(x) = f(x) - \frac{\alpha}{2}||x||^2$. $\nabla g(x) = \nabla f(x) - \alpha x$. g is convex iff

$$g(y) \ge g(x) + \langle \nabla g(x), y - x \rangle, \forall x, y$$

This is also equivalent to

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2, \ \forall x, y$$

Hence f is strongly convex iff g is convex.

Note that $\nabla^2 g(x) = \nabla^2 f(x) - \alpha I$.

This shows that f is strongly convex iff $\nabla f(x) - \alpha I$ is positive semi-definite.

4. Suppose f is positively homogeneous and convex. Then

$$f(x+y) = 2f(\frac{1}{2}x + \frac{1}{2}y) \le 2(\frac{1}{2}f(x) + \frac{1}{2}f(y)) = f(x) + f(y)$$

Hence f is subadditive.

Suppose f is positively homogeneous and subadditive. Let $\lambda \in [0,1]$.

$$f(\lambda x + (1 - \lambda)y) \le f(\lambda x) + f((1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$$

Hence, f is convex.