Math4230 Exercise 2 Solution

1. (a) We may assume $\lambda_{2}>0\left(\lambda_{2}>0\right.$ is easy). Let $x \in C$. Since $0 \in C$, $\frac{\lambda_{1}}{\lambda_{2}} x=\frac{\lambda_{1}}{\lambda_{2}} x+\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}} 0 \in C$.
Then $\lambda_{1} x=\lambda_{2}\left(\frac{\lambda_{1}}{\lambda_{2}} x\right) \in \lambda_{2} C$.
(b) We may assume $\alpha+\beta>0(\alpha+\beta=0$ is easy). Then

$$
\alpha x+\beta y=(\alpha+\beta)\left(\frac{\alpha}{\alpha+\beta} x+\frac{\beta}{\alpha+\beta} y\right)
$$

2. Suppose $\sum_{i=1}^{m} \lambda_{i} x_{i}+\lambda x=0$ and $\sum_{i=1}^{m} \lambda_{i}+\lambda=0$.

Suppose $\lambda \neq 0$. Then

$$
-\sum_{i=1}^{m} \frac{\lambda_{i}}{\lambda}=1
$$

So $x=-\sum_{i=1}^{m} \frac{\lambda_{i}}{\lambda} x_{i} \in \operatorname{aff}\left(\left\{x_{1}, \ldots, x_{m}\right\}\right)$, which is a contradiction.
Hence $\lambda=0$. Then $\lambda_{i}=0$ since x_{1}, \ldots, x_{m} are affinely independent.
Therefore, x_{1}, \ldots, x_{m}, x are affinely independent.
3. Since $\left\{x_{0}, \ldots, x_{m}\right\} \subset \Delta_{m} \subseteq C$, $\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right) \subseteq \operatorname{aff}\left(\Delta_{m}\right) \subseteq \operatorname{aff}(C)$.

Since x_{0}, \ldots, x_{m} are affinely independent, $\operatorname{dim}\left\{x_{0}, \ldots, x_{m}\right\}=m=\operatorname{dim}(C)$. Then $\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)=\operatorname{aff}(C)$ by dimension argument.
Hence, $\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)=\operatorname{aff}\left(\Delta_{m}\right)=\operatorname{aff}(C)$
4. (a) Suppose $f(x), f(y) \leq a$. Let $\lambda \in[0,1]$. Then

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \leq \lambda a+(1-\lambda) a=a
$$

Hence $\lambda x+(1-\lambda) y \in\left\{x \in \mathbb{R}^{n} \mid f(x) \leq a\right\}$ and the level set is convex.
(b) No. Consider $f(x)=x^{2}$. $C=(1,2)$.

