Math4230 Exercise 2 Solution

- 1. (a) We may assume $\lambda_2 > 0$ ($\lambda_2 > 0$ is easy). Let $x \in C$. Since $0 \in C$, $\frac{\lambda_1}{\lambda_2}x = \frac{\lambda_1}{\lambda_2}x + \frac{\lambda_2 \lambda_1}{\lambda_2}0 \in C$. Then $\lambda_1 x = \lambda_2(\frac{\lambda_1}{\lambda_2}x) \in \lambda_2 C$. (b) We may assume $\alpha + \beta > 0$ ($\alpha + \beta = 0$ is easy). Then

$$\alpha x + \beta y = (\alpha + \beta)\left(\frac{\alpha}{\alpha + \beta}x + \frac{\beta}{\alpha + \beta}y\right)$$

2. Suppose $\sum_{i=1}^{m} \lambda_i x_i + \lambda x = 0$ and $\sum_{i=1}^{m} \lambda_i + \lambda = 0$. Suppose $\lambda \neq 0$. Then

$$-\sum_{i=1}^{m} \frac{\lambda_i}{\lambda} = 1$$

So $x = -\sum_{i=1}^{m} \frac{\lambda_i}{\lambda} x_i \in \operatorname{aff}(\{x_1, ..., x_m\})$, which is a contradiction. Hence $\lambda = 0$. Then $\lambda_i = 0$ since $x_1, ..., x_m$ are affinely independent. Therefore, $x_1, ..., x_m, x$ are affinely independent.

- 3. Since $\{x_0, ..., x_m\} \subset \Delta_m \subseteq C$, aff $(\{x_0, ..., x_m\}) \subseteq aff(\Delta_m) \subseteq aff(C)$. Since $x_0, ..., x_m$ are affinely independent, $\dim\{x_0, ..., x_m\} = m = \dim(C)$. Then $\operatorname{aff}(\{x_0, ..., x_m\}) = \operatorname{aff}(C)$ by dimension argument. Hence, $\operatorname{aff}(\{x_0, ..., x_m\}) = \operatorname{aff}(\Delta_m) = \operatorname{aff}(C)$
- 4. (a) Suppose $f(x), f(y) \leq a$. Let $\lambda \in [0, 1]$. Then $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \lambda a + (1 - \lambda)a = a.$ Hence $\lambda x + (1 - \lambda)y \in \{x \in \mathbb{R}^n | f(x) \le a\}$ and the level set is convex. (b) No. Consider $f(x) = x^2$. C = (1, 2).