Math4230 Exercise 2

- 1. (a) Let C be a nonempty, convex set that contains 0 and let $0 \le \lambda_1 \le \lambda_2$. Show that $\lambda_1 C \subseteq \lambda_2 C$.
 - (b) Let C be a nonempty, convex set. Let $\alpha, \beta \ge 0$. Show that $\alpha C + \beta C \subseteq (\alpha + \beta)C$.
- 2. Let $\{x_1, ..., x_m\}$ be affinely independent and suppose $x \notin \text{aff}(\{x_1, ..., x_m\})$. Show that $x_1, ..., x_m, x$ are affinely independent.
- 3. Suppose C is convex with dim(C) = m, $m \ge 1$. Let $\{x_0, x_1, ..., x_m\} \subset C$ be an affinely independent set. Let $\Delta_m := \operatorname{conv}(\{x_0, x_1, ..., x_m\})$. Show that $\operatorname{aff}(C) = \operatorname{aff}(\Delta_m) = \operatorname{aff}(\{x_0, x_1, ..., x_m\})$.
- 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function.
 - (a) Show that for every $a \in \mathbb{R}$ the *level set* $\{x \in \mathbb{R}^n | f(x) \le a\}$ is convex.
 - (b) Let $C \subseteq \mathbb{R}$ be a convex set. Is it true in general that the inverse image $f^{-1}(C)$ is a convex set?