Math4230 Exercise 1 Solution

1. Suppose C is a convex. Let $x, y \in C$. Then since C is convex, $\frac{1}{2} x+\frac{1}{2} y \in C$.

Since C is a cone, $2\left(\frac{1}{2} x+\frac{1}{2} y\right)=x+y \in C$.
Conversely, suppose $C+C \subseteq C$. Let $\lambda \in(0,1)$. Since C is a cone, then $\lambda x,(1-\lambda) y \in C$, for all $x, y \in C$. Hence $\lambda x+(1-\lambda) y \in C$. Therefore, C is convex.
2. (Interior) Let $x, y \in C^{\circ}$. Then there exists r such that balls with radius r centred at x and y are both inside C.
Suppose $\alpha \in[0,1]$ and $\|z\|<r$. By convexity of C, we have,

$$
\alpha x+(1-\alpha) y+z=\alpha(x+z)+(1-\alpha)(y+z) \in C
$$

Therefore, $\alpha x+(1-\alpha) y \in C^{\mathrm{o}}$. Hence C° is convex.
(Closure) Let $x, y \in \bar{C}$. Then there exists sequences $\left\{x_{k}\right\} \subset C,\left\{y_{k}\right\} \subset C$ such that $x_{k} \rightarrow x, y_{k} \rightarrow y$. Suppose $\alpha \in[0,1]$. Then for each k ,

$$
\alpha x_{k}+(1-\alpha) y_{k} \in C
$$

But $\alpha x_{k}+(1-\alpha) y_{k} \rightarrow \alpha x+(1-\alpha) y \in \bar{C}$. Hence, \bar{C} is convex.
3. Let T be a linear map.
(a) Let $y_{1}=T\left(x_{1}\right), y_{2}=T\left(x_{2}\right) \in f(C), \lambda \in[0,1]$, where $x_{1}, x_{2} \in C$.

Then $\lambda y_{1}+(1-\lambda) y_{2}=T\left(\lambda x_{1}+(1-\lambda) x_{2}\right)$.
Since C is convex, $\lambda x_{1}+(1-\lambda) x_{2} \in C$. Hence $\lambda y_{1}+(1-\lambda) y_{2} \in T(C)$.
(b) Let $x_{1}, x_{2} \in T^{-1}\left(C^{\prime}\right), \lambda \in[0,1]$.

Then $T\left(\lambda x_{1}+\left(1-\lambda x_{2}\right)\right)=\lambda T\left(x_{1}\right)+(1-\lambda) T\left(x_{2}\right)$.
Since $T\left(x_{1}\right), T\left(x_{2}\right) \in C^{\prime}$ and C^{\prime} is convex, $\lambda T\left(x_{1}\right)+(1-\lambda) T\left(x_{2}\right) \in C^{\prime}$.
Hence, $T^{-1}\left(C^{\prime}\right)$ is also convex.
4. (a) Let $y_{1}, y_{2} \in f(C)$. Then $y_{1}=\frac{u_{1}}{t_{1}}, y_{2}=\frac{u_{2}}{t_{2}}$.

Let $\lambda \in[0,1]$. Consider $\lambda \frac{u_{1}}{t_{1}}+(1-\lambda) \frac{u_{2}}{t_{2}}$.
We need to find α such that

$$
\lambda \frac{u_{1}}{t_{1}}+(1-\lambda) \frac{u_{2}}{t_{2}}=\frac{\alpha u_{1}+(1-\alpha) u_{2}}{\alpha t_{1}+(1-\alpha) t_{2}}=f\left(\alpha\left(u_{1}, t_{1}\right)+(1-\alpha)\left(u_{2}, t_{2}\right)\right)
$$

It can be verified that $\alpha=\frac{\lambda t_{2}}{(1-\lambda) t_{1}+\lambda t_{2}}$ satisfies the above equation.
This shows that $\lambda y_{1}+(1-\lambda) y_{2} \in f(C)$
(b) Let $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in f^{-1}(C)$. Let $\lambda \in[0,1]$.

We need to show that $\frac{\lambda x_{1}+(1-\lambda) x_{2}}{\lambda t_{1}+(1-\lambda) t_{2}} \in C$.
Consider $\alpha=\frac{\lambda t_{1}}{\lambda t_{1}+(1-\lambda) t_{2}}$. Then

$$
\frac{\lambda x_{1}+(1-\lambda) x_{2}}{\lambda t_{1}+(1-\lambda) t_{2}}=\alpha \frac{x_{1}}{t_{1}}+(1-\alpha) \frac{x_{2}}{t_{2}} \in C
$$

(c) Consider

$$
g(x)=\left[\begin{array}{c}
A \\
c^{T}
\end{array}\right] x+\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

Since g is an affine function, it is convex.
Let $f: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{m}$ be a perspective function. Then

$$
\frac{A x+b}{c^{T} x+d}=f(g(x))
$$

Then $h(C)$ is convex if C is convex.

