Math4230 Exercise 10 Solution

1. Suppose x^{*}, λ^{*} satisfy the KKT conditions. Then

$$
\begin{aligned}
\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle & =\left\langle-\sum \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right), x-x^{*}\right\rangle \\
& \geq \sum \lambda_{i}^{*}\left(g_{i}\left(x^{*}\right)-g_{i}(x)\right) \\
& =-\sum \lambda_{1}^{*} g_{i}(x) \\
& \geq 0
\end{aligned}
$$

The first inequality holds since g_{i} are convex. The second inequality holds since x is feasible and $\lambda_{i}^{*} \geq 0$.
2. (a) $2 x+3 y+2 z$ is continuous and K is compact, hence an optimal solution exists.
(b) We minimize $-2 x-3 y-2 z$. KKT conditions:

$$
\begin{aligned}
\left(x^{*}\right)^{2}+\left(y^{*}\right)^{2}+\left(z^{*}\right)^{2} & =1 \\
x^{*}+y^{*}+z^{*} & \geq 0 \\
\lambda^{*}\left(x^{*}+y^{*}+z^{*}\right) & =0 \\
\lambda^{*} & \geq 0 \\
-2-\lambda^{*}+\mu^{*} 2 x^{*} & =0 \\
-3-\lambda^{*}+\mu^{*} 2 y^{*} & =0 \\
-2-\lambda^{*}+\mu^{*} 2 z^{*} & =0
\end{aligned}
$$

(c) Adding the last 3 equations, we have $2 \mu^{*}\left(x^{*}+y^{*}+z^{*}\right)=3 \lambda^{*}+7$. If $x^{*}+y^{*}+z^{*}=0$, then $\lambda^{*}=-7 / 3$. Contradiction.
Hence $\lambda^{*}=0$. So, $x^{*}=1 / \mu^{*}, y^{*}=3 / 2 \mu^{*}, z^{*}=1 / \mu^{*}$.
But $\left(x^{*}\right)^{2}+\left(y^{*}\right)^{2}+\left(z^{*}\right)^{2}=1$, so $\mu^{*}=\sqrt{17} / 2$.
Hence, $x^{*}=2 \sqrt{17} / 17, y^{*}=3 \sqrt{17} / 17, z^{*}=2 \sqrt{17} / 17$.
3. (a) Note that $\|x\|=1$ is equivalent to $\|x\|^{2}-1=0$. We use this as constraint.
KKT conditions:

$$
\begin{aligned}
\left\|x^{*}\right\|^{2} & =1 \\
2 A x^{*}+2 \mu^{*} x^{*} & =0
\end{aligned}
$$

(b) Assuming the KKT conditions are necessary, we have $A x^{*}=-\mu^{*} x^{*}$. Therefore, x^{*} is an eigenvetor of A with eigenvalue $-\mu^{*}$.
Since $\left\langle x^{*}, A x^{*}\right\rangle=-\mu^{*}\|x\|^{2}=-\mu^{*}$, the optimal value is an eigenvalue of A.
4. (a) Note that 0 is the only feasible point. Hence the optimal value is 0 . $L(x, \lambda)=x+\lambda x^{2}$.
So the dual function $g(\lambda)=-1 / 4 \lambda$ if $\lambda>0 .(g(\lambda)=-\infty$ if $\lambda \leq 0$. Dual Problem

$$
\max _{\lambda \geq 0}-1 / 4 \lambda
$$

The dual optimal value is hence 0 . Therefore, there is no duality gap.
(b) There is no λ such that $-1 / 4 \lambda=0$. Hence there is no dual optimal solution.
(This example shows that dual optimal solution may not exist, even if there is no duality gap.)

