Math4230 Exercise 10 Solution

1. Suppose x^*, λ^* satisfy the KKT conditions. Then

$$\langle \nabla f(x^*), x - x^* \rangle = \langle -\sum \lambda_i^* \nabla g_i(x^*), x - x^* \rangle$$

$$\geq \sum \lambda_i^* (g_i(x^*) - g_i(x))$$

$$= -\sum \lambda_1^* g_i(x)$$

$$\geq 0$$

The first inequality holds since g_i are convex. The second inequality holds since x is feasible and $\lambda_i^* \ge 0$.

- 2. (a) 2x + 3y + 2z is continuous and K is compact, hence an optimal solution exists.
 - (b) We minimize -2x 3y 2z. KKT conditions:

$$\begin{aligned} (x^*)^2 + (y^*)^2 + (z^*)^2 &= 1, \\ x^* + y^* + z^* &\geq 0, \\ \lambda^*(x^* + y^* + z^*) &= 0, \\ \lambda^* &\geq 0, \\ -2 - \lambda^* + \mu^* 2x^* &= 0 \\ -3 - \lambda^* + \mu^* 2y^* &= 0 \\ -2 - \lambda^* + \mu^* 2z^* &= 0 \end{aligned}$$

- (c) Adding the last 3 equations, we have $2\mu^*(x^* + y^* + z^*) = 3\lambda^* + 7$. If $x^* + y^* + z^* = 0$, then $\lambda^* = -7/3$. Contradiction. Hence $\lambda^* = 0$. So, $x^* = 1/\mu^*$, $y^* = 3/2\mu^*$, $z^* = 1/\mu^*$. But $(x^*)^2 + (y^*)^2 + (z^*)^2 = 1$, so $\mu^* = \sqrt{17}/2$. Hence, $x^* = 2\sqrt{17}/17$, $y^* = 3\sqrt{17}/17$, $z^* = 2\sqrt{17}/17$.
- 3. (a) Note that ||x|| = 1 is equivalent to $||x||^2 1 = 0$. We use this as constraint. KKT conditions:

$$||x^*||^2 = 1$$

2Ax^{*} + 2\mu^* x^* = 0

- (b) Assuming the KKT conditions are necessary, we have $Ax^* = -\mu^* x^*$. Therefore, x^* is an eigenvector of A with eigenvalue $-\mu^*$. Since $\langle x^*, Ax^* \rangle = -\mu^* ||x||^2 = -\mu^*$, the optimal value is an eigenvalue of A.
- 4. (a) Note that 0 is the only feasible point. Hence the optimal value is 0. $L(x, \lambda) = x + \lambda x^2$. So the dual function $g(\lambda) = -1/4\lambda$ if $\lambda > 0$. $(g(\lambda) = -\infty$ if $\lambda \le 0$.) Dual Problem

$$\max_{\lambda \ge 0} -1/4\lambda$$

The dual optimal value is hence 0. Therefore, there is no duality gap.

(b) There is no λ such that $-1/4\lambda = 0$. Hence there is no dual optimal solution.

(This example shows that dual optimal solution may not exist, even if there is no duality gap.)