Math4230 Exercise 10

1. Consider the following problem

$$
\min x^{2}+1 \text { subject to }(x-2)(x-4) \leq 0
$$

(a) Find the feasible set, optimal value and the optimal solution.
(b) Write down the Lagrangian $L(x, \lambda)$. Find the dual function q.
(c) Solve the dual problem. Does strong duality hold?
2. Consider the following problem

$$
\min \langle c, x\rangle, \text { subject to } f(x) \leq 0
$$

with $c \neq 0$.
Express the dual problem in terms of the conjugate function of f.
3. Consider

$$
\min x_{1}^{2}+x_{2}^{2}
$$

subject to $\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \leq 1,\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2} \leq 1$
(a) Find the feasible set, optimal solution x^{*} and optimal value p^{*}.
(b) Write down the KKT conditions. Can you find $\lambda_{1}^{*}, \lambda_{2}^{*}$ such that $x^{*},\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$ satisfy the KKT conditions?

