Math4230 Exercise 1

1. Let $C \subset \mathbb{R}^{n}$. C is called a cone if $\lambda x \in C$ whenever $\lambda>0$ and $x \in C$. Show that a cone C is convex if and only if $C+C \subseteq C$, where $C+C:=$ $\{x+y \mid x, y \in C\}$.
2. Show that the interior and closure of a convex set is also convex.
3. Show that the image and inverse image of a convex set under a linear transformation is also a convex set.
4. (a) A perspective function is a function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ such that

$$
f(x, t)=\left[\begin{array}{c}
x_{1} / t \\
x_{2} / t \\
\vdots \\
x_{n} / t
\end{array}\right]
$$

where $x \in \mathbb{R}^{n}$ and $t>0$.
Show that the $f(C)$ is convex if C is convex and f is a perspective function.
(b) Show that $f^{-1}(C)$ is convex if C is convex and f is a perspective function.
(c) A linear fractional function is a function of the form

$$
h(x)=\frac{A x+b}{c^{T} x+d}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$ and $d \in \mathbb{R}$. The domain of f is assumed to be $\left\{x \mid c^{T} x+d>0\right\}$.
Show that $h(C)$ is convex if C is convex and h is a linear fractional function.

