## Math4230 Exercise 1

- 1. Let  $C \subset \mathbb{R}^n$ . C is called a *cone* if  $\lambda x \in C$  whenever  $\lambda > 0$  and  $x \in C$ . Show that a cone C is convex if and only if  $C + C \subseteq C$ , where  $C + C := \{x + y \mid x, y \in C\}$ .
- 2. Show that the interior and closure of a convex set is also convex.
- 3. Show that the image and inverse image of a convex set under a linear transformation is also a convex set.
- 4. (a) A perspective function is a function  $f : \mathbb{R}^{n+1} \to \mathbb{R}^n$  such that

$$f(x,t) = \begin{bmatrix} x_1/t \\ x_2/t \\ \vdots \\ x_n/t \end{bmatrix}$$

where  $x \in \mathbb{R}^n$  and t > 0.

Show that the f(C) is convex if C is convex and f is a perspective function.

- (b) Show that  $f^{-1}(C)$  is convex if C is convex and f is a perspective function.
- (c) A linear fractional function is a function of the form

$$h(x) = \frac{Ax+b}{c^T x+d}$$

where  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$  and  $d \in \mathbb{R}$ . The domain of f is assumed to be  $\{x \mid c^T x + d > 0\}$ .

Show that h(C) is convex if C is convex and h is a linear fractional function.