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Last time: gradient descent

Consider the problem
min
x

f(x)

for f convex and differentiable, dom(f) = Rn. Gradient descent:
choose initial x(0) ∈ Rn, repeat

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or by backtracking line
search

If ∇f is Lipschitz, gradient descent has convergence rate O(1/ε).
Downsides:

• Requires f differentiable

• Can be slow to converge
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Outline

Today: crucial mathematical underpinnings!

• Subgradients

• Examples

• Properties

• Optimality characterizations
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Subgradients

Recall that for convex and differentiable f ,

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y

That is, linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x) for all y

• Always exists1

• If f differentiable at x, then g = ∇f(x) uniquely

• Same definition works for nonconvex f (however, subgradients
need not exist)

1On the relative interior of dom(f)
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Examples of subgradients

Consider f : R→ R, f(x) = |x|
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• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]
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Consider f : Rn → R, f(x) = ‖x‖2

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/‖x‖2
• For x = 0, subgradient g is any element of {z : ‖z‖2 ≤ 1}
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Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is any element of [−1, 1]
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Consider f(x) = max{f1(x), f2(x)}, for f1, f2 : Rn → R convex,
differentiable
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• For f1(x) > f2(x), unique subgradient g = ∇f1(x)
• For f2(x) > f1(x), unique subgradient g = ∇f2(x)
• For f1(x) = f2(x), subgradient g is any point on line segment

between ∇f1(x) and ∇f2(x)
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Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

• Nonempty (only for convex f)

• ∂f(x) is closed and convex (even for nonconvex f)

• If f is differentiable at x, then ∂f(x) = {∇f(x)}
• If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g
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Connection to convex geometry

Convex set C ⊆ Rn, consider indicator function IC : Rn → R,

IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x is, recall

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

Why? By definition of subgradient g,

IC(y) ≥ IC(x) + gT (y − x) for all y

• For y /∈ C, IC(y) =∞
• For y ∈ C, this means 0 ≥ gT (y − x)
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Subgradient calculus

Basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...,m fi(x), then

∂f(x) = conv

( ⋃
i:fi(x)=f(x)

∂fi(x)

)

convex hull of union of subdifferentials of active functions at x
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• General composition: if

f(x) = h
(
g(x)

)
= h

(
g1(x), . . . , gk(x)

)
where g : Rn → Rk, h : Rk → R, f : Rn → R, h is convex
and nondecreasing in each argument, g is convex, then

∂f(x) ⊇
{
p1q1 + · · ·+ pkqk :

p ∈ ∂h(g(x)), qi ∈ ∂gi(x), i = 1, . . . , k
}

• General pointwise maximum: if f(x) = maxs∈S fs(x), then

∂f(x) ⊇ cl

{
conv

( ⋃
s:fs(x)=f(x)

∂fs(x)

)}

Under some regularity conditions (on S, fs), we get equality

13



• Norms: important special case. To each norm ‖ · ‖, there is a
dual norm ‖ · ‖∗ such that

‖x‖ = max
‖z‖∗≤1

zTx

(For example, ‖ · ‖p and ‖ · ‖q are dual when 1/p+ 1/q = 1.)
In fact, for f(x) = ‖x‖ (and fz(x) = zTx), we get equality:

∂f(x) = cl

{
conv

( ⋃
z:fz(x)=f(x)

∂fz(x)

)}

Note that ∂fz(x) = z. And if z1, z2 each achieve the max at
x, which means that zT1 x = zT2 x = ‖x‖, then by linearity, so
will tz1 + (1− t)z2 for any t ∈ [0, 1]. Thus

∂f(x) = argmax
‖z‖∗≤1

zTx
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Optimality condition

For any f (convex or not),

f(x?) = min
x

f(x) ⇐⇒ 0 ∈ ∂f(x?)

That is, x? is a minimizer if and only if 0 is a subgradient of f at
x?. This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note the implication for a convex and differentiable function f ,
with ∂f(x) = {∇f(x)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall

min
x

f(x) subject to x ∈ C

is solved at x, for f convex and differentiable, if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

Intuitively: says that gradient increases as we move away from x.
How to prove it? First recast problem as

min
x

f(x) + IC(x)

Now apply subgradient optimality: 0 ∈ ∂(f(x) + IC(x))
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Observe

0 ∈ ∂
(
f(x) + IC(x)

)
⇐⇒ 0 ∈ {∇f(x)}+NC(x)
⇐⇒ −∇f(x) ∈ NC(x)
⇐⇒ −∇f(x)Tx ≥ −∇f(x)T y for all y ∈ C
⇐⇒ ∇f(x)T (y − x) ≥ 0 for all y ∈ C

as desired

Note: the condition 0 ∈ ∂f(x) +NC(x) is a fully general condition
for optimality in convex problems. But it’s not always easy to work
with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y ∈ Rn, X ∈ Rn×p, lasso problem can be parametrized as

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

where λ ≥ 0. Subgradient optimality:

0 ∈ ∂
(1
2
‖y −Xβ‖22 + λ‖β‖1

)
⇐⇒ 0 ∈ −XT (y −Xβ) + λ∂‖β‖1
⇐⇒ XT (y −Xβ) = λv

for some v ∈ ∂‖β‖1, i.e.,

vi ∈


{1} if βi > 0

{−1} if βi < 0

[−1, 1] if βi = 0

, i = 1, . . . , p
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Write X1, . . . , Xp for columns of X. Then our condition reads:{
XT
i (y −Xβ) = λ · sign(βi) if βi 6= 0

|XT
i (y −Xβ)| ≤ λ if βi = 0

Note: subgradient optimality conditions don’t lead to closed-form
expression for a lasso solution ... however they do provide a way to
check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
|XT

i (y −Xβ)| < λ, then βi = 0 (used by screening rules, later?)
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Example: soft-thresholding

Simplfied lasso problem with X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1

This we can solve directly using subgradient optimality. Solution is
β = Sλ(y), where Sλ is the soft-thresholding operator:

[Sλ(y)]i =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

, i = 1, . . . , n

Check: from last slide, subgradient optimality conditions are{
yi − βi = λ · sign(βi) if βi 6= 0

|yi − βi| ≤ λ if βi = 0

20



Now plug in β = Sλ(y) and check these are satisfied:

• When yi > λ, βi = yi − λ > 0, so yi − βi = λ = λ · 1
• When yi < −λ, argument is similar

• When |yi| ≤ λ, βi = 0, and |yi − βi| = |yi| ≤ λ

Soft-thresholding in
one variable:
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Example: distance to a convex set

Recall the distance function to a closed, convex set C:

dist(x,C) = min
y∈C

‖y − x‖2

This is a convex function. What are its subgradients?

Write dist(x,C) = ‖x−PC(x)‖2, where PC(x) is the projection of
x onto C. It turns out that when dist(x,C) > 0,

∂dist(x,C) =

{
x− PC(x)
‖x− PC(x)‖2

}
Only has one element, so in fact dist(x,C) is differentiable and
this is its gradient
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We will only show one direction, i.e., that

x− PC(x)
‖x− PC(x)‖2

∈ ∂dist(x,C)

Write u = PC(x). Then by first-order optimality conditions for a
projection,

(x− u)T (y − u) ≤ 0 for all y ∈ C

Hence
C ⊆ H = {y : (x− u)T (y − u) ≤ 0}

Claim:

dist(y, C) ≥ (x− u)T (y − u)
‖x− u‖2

for all y

Check: first, for y ∈ H, the right-hand side is ≤ 0
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Now for y /∈ H, we have (x− u)T (y− u) = ‖x− u‖2‖y− u‖2 cos θ
where θ is the angle between x− u and y − u. Thus

(x− u)T (y − u)
‖x− u‖2

= ‖y − u‖2 cos θ = dist(y,H) ≤ dist(y, C)

as desired

Using the claim, we have for any y

dist(y, C) ≥ (x− u)T (y − x+ x− u)
‖x− u‖2

= ‖x− u‖2 +
(

x− u
‖x− u‖2

)T
(y − x)

Hence g = (x− u)/‖x− u‖2 is a subgradient of dist(x,C) at x
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Tutorial Example

Want to solve this constrained optimization problem

min
x∈R2

f(x) = min
x∈R2

.4 (x21 + x22)

subject to

g(x) = 2− x1 − x2 ≤ 0



Tutorial example - Cost function

x1

x2iso-contours of f(x)

f(x) = .4 (x21 + x22)



Tutorial example - Constraint

x1

x2
iso-contours of f(x)

feasible region

g(x) = 2− x1 − x2 ≤ 0



Solve this problem with Lagrange Multipliers

Can solve this constrained optimization with Lagrange multipliers:

L(x, λ) = f(x) + λ g(x)

Solution:

The Lagrangian is

L(x, λ) = .4x21 + .4x22 + λ (2− x1 − x2)

The KKT conditions say that at an optimum λ∗ ≥ 0 and

∂L(x∗, λ∗)
∂x1

= .8x∗1 − λ∗ = 0

∂L(x∗, λ∗)
∂x2

= .8x∗2 − λ∗ = 0

∂L(x∗, λ∗)
∂λ

= 2− x∗1 − x∗2 = 0



Solve this problem with Lagrange Multipliers

Can solve this constrained optimization with Lagrange multipliers:

L(x, λ) = f(x) + λ g(x)

Solution ctd:

Find (x∗1, x
∗
2, λ
∗) which fulfill these simultaneous equations. The first two

equations imply

x∗1 =
5

4
λ∗, x2 =

5

4
λ∗

Substituting these into the last equation we get

8− 5λ∗ − 5λ∗ = 0 =⇒ λ∗ =
4

5
← greater than 0

and in turn this means

x∗1 =
5

4
λ∗ = 1, x∗2 =

5

4
λ∗ = 1



Solve this particular problem in another way

Alternate solution:

Construct the Lagrangian dual function

q(λ) = min
x
L(x, λ) = min

x
(f(x) + λg(x))

Find optimal value of x wrt L(x, λ) in terms of the Lagrange multiplier:

x∗1 =
5

4
λ, x∗2 =

5

4
λ

Substitute back into the expression of L(x, λ) to get

q(λ) =
5

4
λ2 + λ (2− 5

4
λ− 5

4
λ)

Find λ ≥ 0 which maximizes q(λ). Luckily in this case the global
optimum of q(λ) corresponds to the constrained optimum

∂q(λ)

∂λ
= −5

2
λ+ 2 = 0 =⇒ λ∗ =

4

5
=⇒ x∗1 = x∗2 = 1



Solve the same problem in another way

The Primal Problem

min
x∈R2

f(x) subject to g(x) ≤ 0

The Lagrangian Dual Problem

max
λ∈R

q(λ) subject to λ ≥ 0

where

q(λ) = min
x∈R2

(f(x) + λ g(x))

is referred to as the Lagrangian dual function.



The general statement

In general we will have multiple inequality and equality constraints.
The statement of the Primal Problem is

min
x∈X

f(x)

subject to

g(x) ≤ 0 and h(x) = 0



While the Dual problem is

Lagrangian Dual Problem

max
λ,µ

q(λ,µ) subject to λ ≥ 0

where

q(λ,µ) = min
x

[
f(x) + λt g(x) + µt h(x)

]
is the Lagrangian dual function.



Why ??

This dual approach is not guaranteed to succeed. However,

• It does for a certain class of functions

• In these cases it often leads to a simpler optimization problem.

• Particularly in the case when the dimension of x is much
larger than the number of constraints.

• The expression of x∗ in terms of the Lagrange multipliers may
give some insight into the optimal solution i.e. the optimal
separating hyper-plane found by the SVM.



Why ??

This dual approach is not guaranteed to succeed. However,

• It does for a certain class of functions

• In these cases it often leads to a simpler optimization problem.

• Particularly in the case when the dimension of x is much
larger than the number of constraints.

• The expression of x∗ in terms of the Lagrange multipliers may
give some insight into the optimal solution i.e. the optimal
separating hyper-plane found by the SVM.

We will now focus on the geometry of the dual solution...



Geometry of the Dual Problem



Map the original problem

x1

x2

⇒ y

z
(g(x), f(x))

G

• Map each point x ∈ R2 to (g(x), f(x)) ∈ R2.

• This map defines the set
G = {(y, z) | y = g(x), z = f(x) for some x ∈ R2}.

• Note: L(x, λ) = z + λ y for some z and y.



Map the original problem

y

z
(g(x), f(x))

G

Define G ⊂ R2 as the image of R2 under the (g, f) map

G = {(y, z) | y = g(x), z = f(x) for some x ∈ R2}

In this space only points with y ≤ 0 correspond to feasible points.



The Primal Problem

y

z
(g(x), f(x))

G(y∗, z∗)

• The primal problem consists in finding a point in G with
y ≤ 0 that has minimum ordinate z.

• Obviously this optimal point is (y∗, z∗).



Visualization of the Lagrangian

y

z
(g(x), f(x))

G(y∗, z∗)

α

z + λy = α

• Given a λ ≥ 0, the Lagrangian is given by

L(x, λ) = f(x) + λg(x) = z + λ y

with (y, z) ∈ G.

• Note z + λy = α is the eqn of a straight line with slope −λ that
intercepts the z-axis at α.



Visualization of the Lagrangian Dual function

y

z
(g(x), f(x))

G(y∗, z∗)

q(λ)

z + λy = q(λ)

For a given λ ≥ 0 Lagrangian dual sub-problem is find: min
(y,z)∈G

(z + λ y)

• Move the line z + λy in the direction (−λ,−1) while remaining in
contact with G.

• The last intercept on the z-axis obtained this way is the value of
q(λ) corresponding to the given λ ≥ 0.



Solving the Dual Problem

y

z
(g(x), f(x))

G(y∗, z∗)

z + λy = q(λ)
z + λ∗y = q(λ∗)

q(λ∗)

Finally want to find the dual optimum: max
λ

q(λ)

• the line with slope −λ with maximal intercept, q(λ), on the z-axis.

• This line has slope λ∗ and dual optimal solution q(λ∗).



Solving the Dual Problem

y

z
(g(x), f(x))

G(y∗, z∗)

z + λy = q(λ)
z + λ∗y = q(λ∗)

q(λ∗)

• For this problem the optimal dual objective z∗ equals the optimal
primal objective z∗.

• In such cases, there is no duality gap (strong duality).



Properties of the Lagrangian Dual Function



q(λ) is concave

Theorem
Let Dq = {λ | q(λ) > −∞} then q(λ) is concave function on Dq.

Proof.
For any x ∈ X and λ1,λ2 ∈ Dq and α ∈ (0, 1)

L(x, αλ1 + (1− α)λ2) = f(x) + (αλ1 + (1− α)λ2)
tg(x)

= α(f(x) + λt
1g(x)) + (1− α)(f(x) + λt

2g(x))

= αL(x,λ1) + (1− α)L(x,λ2).

Take the min on both sides

min
x∈X
{L(x, αλ1 + (1− α)λ2)} = min

x∈X
{αL(x,λ1) + (1− α)L(x,λ2)}

≥ αmin
x∈X
{L(x,λ1)}+ (1− α) min

x∈X
{L(x,λ2)}

Therefore

q(αλ1 + (1− α)λ2) ≥ α q(λ1) + (1− α) q(λ2)

This implies that q is concave over Dq.



The set of Lagrange Multipliers is convex

Theorem
Let Dq = {λ | q(λ) > −∞}. This constraint ensures valid Lagrange
Multipliers exist. Then Dq is a convex set.

Proof.
Let λ1,λ2 ∈ Dq. Therefore q(λ1) > −∞ and q(λ2) > −∞. Let
α ∈ (0, 1), then as q is concave

q(αλ1 + (1− α)λ2) ≥ α q(λ1) + (1− α) q(λ2) > −∞

and this implies

αλ1 + (1− α)λ2 ∈ Dq

Hence Dq is a convex set.



Significance of these results

• The dual is always concave, irrespective of the primal problem.

• Therefore finding the optimum of the dual function is a
convex optimization problem.



Weak Duality



Weak Duality

Theorem (Weak Duality)

Let x be a feasible solution, x ∈ X , g(x) ≤ 0 and h(x) = 0, to the
primal problem P . Let (λ,µ) be a feasible solution, λ ≥ 0, to the
dual problem D. Then

f(x) ≥ q(λ,µ)



Weak Duality

Proof of the Weak Duality Theorem.
Remember

q(λ,µ) = inf{f(x) +
m∑
i=1

λigi(x) +

l∑
i=1

µihi(x) : x ∈ XF }

Then we have

q(λ,µ) = inf{f(x̃) + λtg(x̃) + µth(x̃) : x̃ ∈ XF }
≤ f(x) + λtg(x) + µth(x)

≤ f(x)

and the result follows.



Weak Duality

Corollary

Let

f∗ = inf{f(x) : x ∈ X, g(x) ≥ 0, h(x) = 0}
q∗ = sup{q(λ,µ) : λ ≥ 0}

then

q∗ ≤ f∗

• Thus the

optimal value of the primal problem ≥ optimal value of the dual problem.

• If optimal value of the primal problem > optimal value of the
dual problem, then there exists a duality gap.



Weak Duality

Corollary

Let

f∗ = inf{f(x) : x ∈ X, g(x) ≥ 0, h(x) = 0}
q∗ = sup{q(λ,µ) : λ ≥ 0}

then

q∗ ≤ f∗

• Thus the

optimal value of the primal problem ≥ optimal value of the dual problem.

• If optimal value of the primal problem > optimal value of the
dual problem, then there exists a duality gap.



Example with a Duality Gap



Example with a non-convex objective function

x

f(x) non-convex f(x)

feasible region
defined by g(x) ≤ 0

• Consider the constrained optimization of this 1D non-convex
objective function.

• Let’s visualize G = {(y, z) | ∃x ∈ R s.t. y = g(x), z = f(x))} and its
dual solution...



Dual Solution ≤ Primal Solution: Have a Duality Gap

y

z

Duality Gap

G

Optimal primal objective

Optimal dual objective

• Above is the geometric interpretation of the primal and dual
problems.

• Note there exists a duality gap due to the nonconvexity of
the set G.



Strong Duality



When does Dual Solution = Primal Solution?

The Strong Duality Theorem states, that if some suitable
convexity conditions are satisfied, then there is no duality gap
between the primal and dual optimisation problems.



Strong Duality

Theorem (Strong Duality)
Let

• X be a non-empty convex set in Rn

• f : X → R and each gi : Rn → R (i = 1, . . . ,m) be convex,

• each hi : Rn → R (i = 1, . . . , l) be affine.

If

• there exists x̂ ∈ X such that g(x̂) < 0 and

• 0 ∈ int(h(X)) where h(X) = {h(x) : x ∈ X}.

then

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0} = sup{q(λ,µ) : λ ≥ 0}

where q(λ,µ) = inf{f(x) + λtg(x) + µth(x) : x ∈ X}.



Strong Duality

Theorem (Strong Duality ctd)
Furthermore, if

inf{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0} > −∞

then the

sup{q(λ,µ) : λ ≥ 0}

is achieved at (λ∗,µ∗) with λ∗ ≥ 0. If the inf is achieved at x∗ then

(λ∗)tg(x∗) = 0



Exercise 2.18 a. In the above proof the following property is used: if S ⊂ R
n is

compact, then its convex hull co S is compact. Prove this, using the following result
of Carathéodory: in R

n every convex combination x of p ≥ n+1 points x1, . . . , xp (i.e.,
x =

∑p
1 αixi for αi ≥ 0 and

∑p
1 αi = 1) can also be written as a convex combination

of at most n + 1 points xi1 , . . . , xin+1 ⊂ {x1, . . . , xp}.
b. Give an example of a closed set S ⊂ R

n for which co S is not closed (conclusion:
in the above proof it is essential to work with compactness).

Exercise 2.19 Let f(x) := |x| on S := R. Then ∂f(0) = [−1, 1] (by Exercise 2.16(b)
for n = 1). Demonstrate how this result can also be derived from Theorem 2.17.

Exercise 2.20 Show by means of an example that in Theorem 2.17 it is essential to
have x0 ∈ ∩iint dom fi.

3 The Kuhn-Tucker theorem for convex program-

ming

We use the results of the previous section to derive the celebrated Kuhn-Tucker theo-
rem for convex programming. Unlike its counterparts in section 4 of [1], this theorem
gives necessary and sufficient conditions for optimality for the standard convex pro-
gramming problem. First we discuss the situation with inequality constraints only.

Theorem 3.1 (Kuhn-Tucker – no equality constraints) Let f, g1, · · · , gm : R
n →

(−∞, +∞] be convex functions and let S ⊂ R
n be a convex set. Consider the convex

programming problem

(P ) inf
x∈S
{f(x) : g1(x) ≤ 0, · · · , gm(x) ≤ 0}.

Let x̄ be a feasible point of (P ); denote by I(x̄) the set of all i ∈ {1, · · · , m} for which
gi(x̄) = 0.

(i) x̄ is an optimal solution of (P ) if there exist vectors of multipliers ū :=
(ū1, · · · , ūm) ∈ R

m
+ and η̄ ∈ R

n such that the following three relationships hold:

ūigi(x̄) = 0 for i = 1, · · · , m (complementary slackness),

0 ∈ ∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + η̄ (normal Lagrange inclusion),

η̄t(x− x̄) ≤ 0 for all x ∈ S (obtuse angle property).

(ii) Conversely, if x̄ is an optimal solution of (P ) and if x̄ ∈ int dom f∩∩i∈I(x̄)int dom gi,
then there exist multipliers ū0 ∈ {0, 1}, ū ∈ R

m
+ , (ū0, ū) 	= (0, 0), and η̄ ∈ R

n such
that the complementary slackness relationship and obtuse angle property of part (i)
hold, as well as the following:

0 ∈ ū0∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + η̄ (Lagrange inclusion).
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Here the normal case is said to occur when ū0 = 1 and the abnormal case when
ū0 = 0.

Remark 3.2 (minimum principle) By Theorem 2.9, the normal Lagrange inclu-
sion in Theorem 3.1 implies

−η̄ ∈ ∂(f +
∑

i∈I(x̄)

ūigi)(x̄).

So by Theorem 2.10 and Remark 2.11 it follows that

x̄ ∈ argminx∈S[f(x) +
∑

i∈I(x̄)

ūigi(x)](minimum principle).

Likewise, under the additional condition dom f ∩ ∩i∈I(x̄)int dom gi 	= ∅, this mini-
mum principle implies the normal Lagrange inclusion by the converse parts of Theo-
rem 2.10/Remark 2.11 and Theorem 2.9.

Remark 3.3 (Slater’s constraint qualification) The following Slater constraint
qualification guarantees normality: Suppose that there exists x̃ ∈ S such that gi(x̃) < 0
for i = 1, · · · , m. Then in part (ii) of Theorem 3.1 we have the normal case ū0 = 1.

Indeed, suppose we had ū0 = 0. For ū0 = 0 instead of ū0 = 1 the proof of the
minimum principle in Remark 3.2 can be mimicked and gives

m∑
i=1

ūigi(x̄) ≤
m∑

i=1

ūigi(x̃).

Since (ū1, · · · , ūm) 	= (0, · · · , 0), this gives
∑m

i=1 ūigi(x̄) < 0, in contradiction to com-
plementary slackness.

Proof of Theorem 3.1. Let us write I := I(x̄). (i) By Remark 3.2 the
minimum principle holds, i.e., for any x ∈ S we have

f(x) +
∑
i∈I

ūigi(x) ≥ f(x̄)

(observe that
∑

i∈I ūigi(x̄) = 0 by complementary slackness). Hence, for any feasible
x ∈ S we have

f(x) ≥ f(x) +
∑
i∈I

ūigi(x) ≥ f(x̄),

by nonnegativity of the multipliers. Clearly, this proves optimality of x̄.
(ii) Consider the auxiliary optimization problem

(P ′) inf
x∈S

φ(x),

where φ(x) := max[f(x)−f(x̄), max1≤i≤m gi(x)]. Since x̄ is an optimal solution of (P ),
it is not hard to see that x̄ is also an optimal solution of (P ′) (observe that φ(x̄) = 0
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and that x ∈ S is feasible if and only if max1≤i≤m gi(x) ≤ 0). By Theorem 2.10
and Remark 2.11 there exists η̄ in R

n such that η̄ has the obtuse angle property and
−η̄ ∈ ∂φ(x̄). By Theorem 2.17 this gives

−η̄ ∈ ∂φ(x̄) = co(∂f(x̄) ∪ ∪i∈I∂gi(x̄)).

Since subdifferentials are convex, we get the existence of (u0, ξ0) ∈ R+ × ∂f(x̄) and
(ui, ξi) ∈ R+ × ∂gi(x̄), i ∈ I, such that

∑
i∈{0}∪I ui = 1 and

−η̄ =
∑

i∈{0}∪I

uiξi.

In case u0 = 0, we are done by setting ūi := ui for i ∈ {0} ∪ I and ūi := 0 otherwise.
Observe that in this case (ū1, · · · , ūm) 	= (0, · · · , 0) by

∑
i∈I ui = 1. In case u0 	= 0,

we know that u0 > 0, so we can set ūi := ui/u0 for i ∈ {0} ∪ I and ūi := 0 otherwise.
QED

Example 3.4 Consider the following optimization problem:

(P ) minimize (x1 − 9

4
)2 + (x2 − 2)2

over all (x1, x2) ∈ R
2
+ such that

x2
1 − x2 ≤ 0

x1 + x2 − 6 ≤ 0

−x1 + 1 ≤ 0

Since Slater’s constraint qualification clearly holds, we get that a feasible point (x̄1, x̄2)
is optimal if and only if there exists (ū1, ū2, ū3) ∈ R

3
+ such that

(
0
0

)
=

(
2(x̄1 − 9

4
)

2(x̄2 − 2)

)
+ ū1

(
2x̄1

−1

)
+ ū2

(
1
1

)
+ ū3

( −1
0

)
+

(
η̄1

η̄2

)

for some η̄ := (η̄1, η̄2)
t with

η̄t(x− x̄) ≤ 0 for all x ∈ R
2
+

and such that

ū1(x̄
2
1 − x̄2) = 0

ū2(x̄1 + x̄2 − 6) = 0

ū3(−x̄1 + 1) = 0

Let us first deal with η̄: observe that the above obtuse angle property forces η̄1 and
η̄2 to be nonpositive, and x̄i > 0 even implies η̄i = 0 for i = 1, 2 (this can be seen as
a form of complementarity). Since x̄1 ≥ 1, this means η̄1 = 0. Also, x̄2 = 0 stands
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no chance, because it would mean x̄2
1 ≤ 0. Hence, η̄ = 0. We now distinguish the

following possibilities for the set I := I(x̄):
Case 1 (I = ∅): By complementary slackness, ū1 = ū2 = ū3 = 0, so the Lagrange

inclusion gives x̄1 = 9/4, x̄2 = 2, which violates the first constraint ((9/4)2 	≤ 2).
Case 2 (I = {1}): By complementary slackness, ū2 = ū3 = 0. The Lagrange

inclusion gives x̄1 = 9
4
(1 + ū1)

−1, x̄2 = ū1/2 + 2, so, since x̄2
1 = x̄2, by definition of

I, we obtain the equation ū3
1 + 6ū2

1 + 9ū1 = 49/8, which has ū1 = 1/2 as its only
solution. It follows then that x̄ = (3/2, 9/4)t.

At this stage we can already stop: Theorem 3.1(i) guarantees that, in fact, x̄ =
(3/2, 9/4)t is an optimal solution of (P ). Moreover, since the objective function
(x1, x2) �→ (x1− 9

4
)2 +(x2− 2)2 is strictly convex, it follows that any optimal solution

of (P ) must be unique. So x̄ = (3/2, 9/4)t is the unique optimal solution of (P ).

Exercise 3.1 Consider the optimization problem

(P ) sup
(ξ1,ξ2)∈R

2
+

{ξ1ξ2 : 2ξ1 + 3ξ2 ≤ 5}.

Solve this problem using Theorem 3.1. Hint: The set of optimal solutions does not
change if we apply a monotone transformation to the objective function. So one can
use f(ξ1, ξ2) :=

√
ξ1ξ2 to ensure convexity (see Exercise 2.11).

Exercise 3.2 Let ai > 0, i = 1, . . . , n and let p ≥ 1. Consider the optimization
problem

(P ) maximize
n∑

i=1

aiξi over (ξ1, . . . , ξn) ∈ R
n

subject to g(ξ) :=
∑n

i=1 |ξi|p = 1.

a. Show that if the constraint
∑n

i=1 |ξi|p = 1 is replaced by
∑n

i=1 |ξi|p ≤ 1, then this
results in exactly the same optimal solutions.
b. Prove that g : R

n → R, as defined above, is convex. Prove also that g is in fact
strictly convex if p > 1.
c. Apply Theorem 3.1 to determine the optimal solutions of (P ). Hint: Treat the
cases p = 1 and p > 1 separately.
d. Derive from the result obtained in part (c) for p > 1 the following famous Hölder
inequality, which is an extension of the Cauchy-Schwarz inequality: |∑i aiξi| ≤
(
∑

i a
q
i )

1/q(
∑

i |ξi|p)1/p for all (ξ1, . . . , ξn) ∈ R
n. Here q is defined by q := p/(p− 1).

Corollary 3.5 (Kuhn-Tucker – general case) Let f, g1, · · · , gm : R
n → (−∞, +∞]

be convex functions, let S ⊂ R
n be a convex set. Also, let A be a p × n-matrix and

let b ∈ R
p. Define L := {x : Ax = b}. Consider the convex programming problem

(P ) inf
x∈S
{f(x) : g1(x) ≤ 0, · · · , gm(x) ≤ 0, Ax− b = 0}.

Let x̄ be a feasible point of (P ); denote by I(x̄) the set of all i ∈ {1, · · · , m} for which
gi(x̄) = 0.
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(i) x̄ is an optimal solution of (P ) if there exist vectors of multipliers ū ∈ R
m
+ ,

v̄ ∈ R
p and η̄ ∈ R

n such that the complementary slackness relationship and the obtuse
angle property hold just as in Theorem 3.1(i), as well as the following version of the
normal Lagrange inclusion:

0 ∈ ∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + Atv̄ + η̄.

(ii) Conversely, if x̄ is an optimal solution of (P ) and if both x̄ ∈ int dom f ∩
∩i∈I(x̄)int dom gi and int S ∩L 	= ∅, then there exist multipliers ū0 ∈ {0, 1}, ū ∈ R

m
+ ,

(ū0, ū) 	= (0, 0), and v̄ ∈ R
p, η̄ ∈ R

n such that the complementary slackness rela-
tionship and obtuse angle property of part (i) hold, as well as the following Lagrange
inclusion:

0 ∈ ū0∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + Atv̄ + η̄.

Proof. Observe that ∂χL(x̄) = im At. Indeed, η ∈ ∂χL(x̄) is equivalent to
ηt(x − x̄) ≤ 0 for all x ∈ L, i.e., to ηt(x − x̄) = 0 for all x ∈ R

n with A(x − x̄) = 0.
But the latter states that η belongs to the bi-orthoplement of the linear subspace
im At, so it belongs to im At itself. This proves the observation. Let us note that the
above problem (P ) is precisely the same problem as the one of Theorem 3.1, but with
S replaced by S ′ := S ∩L. Thus, parts (i) and (ii) follow directly from Theorem 3.1,
but now η̄ as in Theorem 3.1 has to be replaced by an element (say η′) in ∂χS′ . From
Theorem 2.9 we know that

∂χS′(x̄) = ∂χS(x̄) + ∂χL(x̄),

in view of the condition int S∩L 	= ∅. Therefore, η′ can be decomposed as η′ = η̄+η,
with η̄ ∈ ∂χS(x̄) (this amounts to the obtuse angle property, of course), and with
η ∈ ∂χL(x̄). By the above there exists v̄ ∈ R

m with η = Atv̄ and this finishes the
proof. QED

Example 3.6 Let c1, · · · , cn, a1, · · · , an and b be positive real numbers. Consider the
following optimization problem:

(P ) minimize
n∑

i=1

ci

xi

over all x = (x1, · · · , xn)t ∈ R
n
++ (the strictly positive orthant) such that

n∑
i=1

aixi = b.

Let us try to meet the sufficient conditions of Corollary 3.5(i). Thus, we must find a
feasible x̄ ∈ R

n and multipliers v̄ ∈ R, η̄ ∈ R
n such that⎛

⎜⎝
0
...
0

⎞
⎟⎠ =

⎛
⎜⎝
− c1

x̄2
1

...
− cn

x̄2
n

⎞
⎟⎠ +

⎛
⎜⎝

a1
...

an

⎞
⎟⎠ v̄ + η̄.
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and such that the obtuse angle property holds for η̄. To begin with the latter, since
we seek x̄ in the open set S := R

n
++, the only η̄ with the obtuse angle property is

η̄ = 0. The above Lagrange inclusion gives x̄i = (ci/(v̄ai))
1/2 for all i. To determine v̄,

which must certainly be positive, we use the constraint: b =
∑

i aix̄i =
∑

i(aici/v̄)1/2,
which gives v̄ = (

∑
i(aici)

1/2/b)2. Thus, all conditions of Corollary 3.5(i) are seen to
hold: an optimal solution of (P ) is x̄, given by

x̄i =

√
ci

ai

b∑n
j=1

√
ajcj

,

and it is implicit in our derivation that this solution is unique (exercise).

Remark 3.7 By using the relative interior (denoted as ”ri”) of a convex set, i.e.,
the interior relative to the linear variety spanned by that set, one can obtain the
following improvement of the nonempty intersection condition in Theorem 2.9: it is
already enough that ri dom f ∩ dom g is nonempty. Since one can also prove that
A(ri S) = ri A(S) for any convex set S ⊂ R

n and any linear mapping A : R
n → R

p

[2, Theorem 4.9], it follows that the nonempty intersection condition in Corollary 3.5
can be improved considerably into ri S ∩ L 	= ∅ or, equivalently, into b ∈ A(ri S).

Exercise 3.3 In the above proof of Corollary 3.5 the fact was used that for a linear
subspace M of R

n the following holds: let

M⊥ := {x ∈ R
n : xtξ = 0 for all ξ ∈M},

This is a linear subspace itself (prove this), so M⊥⊥ := (M⊥)⊥ is well-defined. Prove
that M = M⊥⊥. Hint: This identity can be established by proving two inclusions;
one of these is elementary and the other requires the use of projections.

Exercise 3.4 What becomes of Corollary 3.5 in the situation where there are no
inequality constraints (i.e., just equality constraints)? Derive this version.

Exercise 3.5 Use Corollary 3.5 to prove the following famous theorem of Farkas.
Let A be a p× n-matrix and let c ∈ R

n. Then precisely one of the following is true:

(1) ∃x∈RnAx ≤ 0 (componentwise) and ctx > 0, (2) ∃y∈R
p
+
Aty = c.

Hint: Show first, by elementary means, that validity of (2) implies that (1) cannot
hold. Next, apply Corollary 3.5 to a suitably chosen optimization problem in order
to prove that if (1) does not hold, then (2) must be true.
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