A Standard material on convexity

Definition A. 1 A set S in \mathbb{R}^{n} is said to be convex if for every $x_{1}, x_{2} \in S$ the line segment $\left\{\lambda x_{1}+(1-\lambda) x_{2}: 0 \leq \lambda \leq 1\right\}$ belongs to S.

For instance, a hyperplane $S=\left\{x \in \mathbb{R}^{n}: p^{t} x=\alpha\right\}$ or a ball $S=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right| \leq\right.$ $\beta\}$ are examples of convex sets. However, the sphere $S=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|=\beta\right\}$ provides an example of a set that is not convex $(\beta>0)$. It is easy to see that arbitrary intersections of convex sets are again convex; also finite sums of convex sets are convex again.

Theorem A. 2 (strict point-set separation [1, Thm. 2.4.4]) Let S be a nonempty closed convex subset of \mathbb{R}^{n} and let $y \in \mathbb{R}^{n} \backslash S$. Then there exists $p \in \mathbb{R}^{n}$, $p \neq 0$, such that

$$
\sup _{x \in S} p^{t} x<p^{t} y
$$

Proof. It is a standard result that there exists $\hat{x} \in S$ such that $\sup _{s \in S}|y-s|=$ $|y-\hat{x}|$ (consider a suitable closed ball around y and apply the theorem of Weierstrass [1, Thm. 2.3.1]). By convexity of S, this means that for every $x \in S$ and every $\lambda \in(0,1]$

$$
|y-(\lambda x+(1-\lambda) \hat{x})|^{2} \geq|y-\hat{x}|^{2}
$$

Obviously, the expression on the left equals

$$
|y-\hat{x}-\lambda(x-\hat{x})|^{2}=|y-\hat{x}|^{2}-2 \lambda(y-\hat{x})^{t}(x-\hat{x})+\lambda^{2}|x-\hat{x}|^{2}
$$

so the above inequality amounts to

$$
2 \lambda(y-\hat{x})^{t}(x-\hat{x}) \leq \lambda^{2}|x-\hat{x}|^{2}
$$

for every $x \in S$ and every $\lambda \in(0,1]$. Dividing by $\lambda>0$ and letting λ go to zero then gives

$$
(y-\hat{x}) \cdot(x-\hat{x}) \leq 0 \text { for all } x \in S
$$

Set $p:=y-\hat{x}$; then $p \neq 0$ (note that $p=0$ would imply $y \in S$). We clearly have $p^{t} x \leq p^{t} \hat{x}$. Also, we have now $p^{t} \hat{x}>p^{t} y$, for otherwise $(y-\hat{x})^{t}(\hat{x}-y) \geq 0$ would imply $y=\hat{x} \in S$, which is impossible. QED

For our next result, recall that $\partial S:=\operatorname{cl} S \cap \operatorname{cl}\left(\mathbb{R}^{n} \backslash S\right)=\operatorname{cl} S \backslash$ int S denotes the boundary of a set $S \subset \mathbb{R}^{n}$.

Theorem A. 3 (supporting hyperplane [1, Thm. 2.4.7]) Let S be a nonempty convex subset of \mathbb{R}^{n} and let $y \in \partial S$. Then there exists $q \in \mathbb{R}^{n}, q \neq 0$, such that

$$
\sup _{x \in \operatorname{cl} S} q^{t} x \leq q^{t} y
$$

In geometric terms, $H:=\left\{x \in \mathbb{R}^{n}: q^{t} x=q^{t} y\right\}$ is said to be a supporting hyperplane for S at y : the hyperplane H contains the point y and the set S (as well as $\operatorname{cl} S$) is contained the halfspace $\left\{x \in \mathbb{R}^{n}: p^{t} x \leq p^{t} y\right\}$.

Proof. Let $Z:=\mathrm{cl} S$; then $\partial S \subset \partial Z$ (exercise). Of course, Z is closed and it is easy to show that Z is convex (use limit arguments). So there exists a sequence $\left(y_{k}\right)$ in $\mathbb{R}^{n} \backslash Z$ such that $y_{k} \rightarrow y$. By Theorem A. 2 there exists for every k a nonzero vector $p_{k} \in \mathbb{R}^{n}$ such that

$$
\sup _{x \in Z} p_{k}^{t} x<p_{k}^{t} y_{k}
$$

Division by $\left|p_{k}\right|$ turns this into

$$
\sup _{x \in Z} q_{k}^{t} x<q_{k}^{t} y_{k}
$$

where $q_{k}:=p_{k} /\left|p_{k}\right|$ belongs to the unit sphere of \mathbb{R}^{n}. This sphere is compact (BolzanoWeierstrass theorem), so we can suppose without loss of generality that $\left(q_{k}\right)$ converges to some $q,|q|=1$ (so q is nonzero). Now for every $x \in Z$ the inequality $q_{k}^{t} x<q_{k}^{t} y_{k}$, which holds for all k, implies

$$
q^{t} x=\lim _{k} q_{k}^{t} x \leq \lim _{k} q_{k}^{t} y_{k}=q^{t} y
$$

and the proof is finished. QED
Theorem A. 4 (set-set separation [1, Thm. 2.4.8]) Let S_{1}, S_{2} be two nonempty convex sets in \mathbb{R}^{n} such that $S_{1} \cap S_{2}=\emptyset$. Then there exist $p \in \mathbb{R}^{n}, p \neq 0$, and $\alpha \in \mathbb{R}$ such that

$$
\sup _{x \in S_{1}} p^{t} x \leq \alpha \leq \inf _{y \in S_{2}} p^{t} y
$$

In geometric terms, $H:=\left\{x \in \mathbb{R}^{n}: p^{t} x=\alpha\right\}$ is said to be a separating hyperplane for S_{1} and S_{2} : each of the two convex sets is contained in precisely one of the two halfspaces $\left\{x \in \mathbb{R}^{n}: p^{t} x \leq \alpha\right\}$ and $\left\{x \in \mathbb{R}^{n}: p^{t} x \geq \alpha\right\}$.

Proof. It is easy to see that $S:=S_{1}-S_{2}$ is convex. Now $0 \notin S$, for otherwise we get an immediate contradiction to $S_{1} \cap S_{2}=\emptyset$. W distinguish now two cases: (i) $0 \in \operatorname{cl} S$ and $(i i) 0 \notin \operatorname{cl} S$.

In case (i) we have $0 \in \partial S$, so by Theorem A. 3 we then have the existence of a nonzero $p \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
p^{t} z \leq 0 \text { for every } z \in S=S_{1}-S_{2} \tag{2}
\end{equation*}
$$

i.e., for every $z=x-y$, with $x \in S_{1}$ and $y \in S_{2}$. This gives $p^{t} x \leq p^{t} y$ for all $x \in S_{1}$ and $y \in S_{2}$, whence the result.

In case (ii) we apply Theorem A. 2 to get immediately (2) as well. The result follows just as in case (i). QED
Theorem A. 5 (strong set-set separation [1, Thm. 2.4.10]) Let S_{1}, S_{2} be two nonempty closed convex sets in \mathbb{R}^{n} such that $S_{1} \cap S_{2}=\emptyset$ and such that S_{1} is bounded. Then there exist $p \in \mathbb{R}^{n}, p \neq 0$, and $\alpha \in \mathbb{R}, \beta \in \mathbb{R}$ such that

$$
\sup _{x \in S_{1}} p^{t} x \leq \alpha<\beta \leq \inf _{y \in S_{2}} p^{t} y
$$

Proof. As in the previous proof, it is easy to see that $S:=S_{1}-S_{2}$ is convex. Now S is also seen to be closed (exercise). As in the previous proof, we have $0 \notin S$. We can now apply Theorem A. 2 to get the desired result, just as in case (ii) of the previous proof. QED

Subgradients

Ryan Tibshirani
Convex Optimization 10-725/36-725

Last time: gradient descent

Consider the problem

$$
\min _{x} f(x)
$$

for f convex and differentiable, $\operatorname{dom}(f)=\mathbb{R}^{n}$. Gradient descent: choose initial $x^{(0)} \in \mathbb{R}^{n}$, repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \nabla f\left(x^{(k-1)}\right), \quad k=1,2,3, \ldots
$$

Step sizes t_{k} chosen to be fixed and small, or by backtracking line search

If ∇f Lipschitz, gradient descent has convergence rate $O(1 / \epsilon)$
Downsides:

- Requires f differentiable \leftarrow next lecture
- Can be slow to converge \leftarrow two lectures from now

Outline

Today: crucial mathematical underpinnings!

- Subgradients
- Examples
- Subgradient rules
- Optimality characterizations

Subgradients

Remember that for convex and differentiable f,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { for all } x, y
$$

I.e., linear approximation always underestimates f

A subgradient of a convex function f at x is any $g \in \mathbb{R}^{n}$ such that

$$
f(y) \geq f(x)+g^{T}(y-x) \text { for all } y
$$

- Always exists
- If f differentiable at x, then $g=\nabla f(x)$ uniquely
- Actually, same definition works for nonconvex f (however, subgradients need not exist)

Examples of subgradients

Consider $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=|x|$

- For $x \neq 0$, unique subgradient $g=\operatorname{sign}(x)$
- For $x=0$, subgradient g is any element of $[-1,1]$

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{2}$

- For $x \neq 0$, unique subgradient $g=x /\|x\|_{2}$
- For $x=0$, subgradient g is any element of $\left\{z:\|z\|_{2} \leq 1\right\}$

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{1}$

- For $x_{i} \neq 0$, unique i th component $g_{i}=\operatorname{sign}\left(x_{i}\right)$
- For $x_{i}=0, i$ th component g_{i} is any element of $[-1,1]$

Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and differentiable, and consider $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$

- For $f_{1}(x)>f_{2}(x)$, unique subgradient $g=\nabla f_{1}(x)$
- For $f_{2}(x)>f_{1}(x)$, unique subgradient $g=\nabla f_{2}(x)$
- For $f_{1}(x)=f_{2}(x)$, subgradient g is any point on the line segment between $\nabla f_{1}(x)$ and $\nabla f_{2}(x)$

Subdifferential

Set of all subgradients of convex f is called the subdifferential:

$$
\partial f(x)=\left\{g \in \mathbb{R}^{n}: g \text { is a subgradient of } f \text { at } x\right\}
$$

- $\partial f(x)$ is closed and convex (even for nonconvex f)
- Nonempty (can be empty for nonconvex f)
- If f is differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$
- If $\partial f(x)=\{g\}$, then f is differentiable at x and $\nabla f(x)=g$

Connection to convex geometry

Convex set $C \subseteq \mathbb{R}^{n}$, consider indicator function $I_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
I_{C}(x)=I\{x \in C\}= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { if } x \notin C\end{cases}
$$

For $x \in C, \partial I_{C}(x)=\mathcal{N}_{C}(x)$, the normal cone of C at x, recall

$$
\mathcal{N}_{C}(x)=\left\{g \in \mathbb{R}^{n}: g^{T} x \geq g^{T} y \text { for any } y \in C\right\}
$$

Why? By definition of subgradient g,

$$
I_{C}(y) \geq I_{C}(x)+g^{T}(y-x) \text { for all } y
$$

- For $y \notin C, I_{C}(y)=\infty$
- For $y \in C$, this means $0 \geq g^{T}(y-x)$

Subgradient calculus

Basic rules for convex functions:

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$
- Affine composition: if $g(x)=f(A x+b)$, then

$$
\partial g(x)=A^{T} \partial f(A x+b)
$$

- Finite pointwise maximum: if $f(x)=\max _{i=1, \ldots m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv}\left(\bigcup_{i: f_{i}(x)=f(x)} \partial f_{i}(x)\right)
$$

the convex hull of union of subdifferentials of all active functions at x

- General pointwise maximum: if $f(x)=\max _{s \in S} f_{s}(x)$, then

$$
\partial f(x) \supseteq \operatorname{cl}\left\{\operatorname{conv}\left(\bigcup_{s: f_{s}(x)=f(x)} \partial f_{s}(x)\right)\right\}
$$

and under some regularity conditions (on S, f_{s}), we get an equality above

- Norms: important special case, $f(x)=\|x\|_{p}$. Let q be such that $1 / p+1 / q=1$, then

$$
\|x\|_{p}=\max _{\|z\|_{q} \leq 1} z^{T} x
$$

Hence

$$
\partial f(x)=\underset{\|z\|_{q} \leq 1}{\operatorname{argmax}} z^{T} x
$$

Why subgradients?

Subgradients are important for two reasons:

- Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality
- Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex function

Optimality condition

For any f (convex or not),

$$
f\left(x^{\star}\right)=\min _{x} f(x) \Longleftrightarrow 0 \in \partial f\left(x^{\star}\right)
$$

I.e., x^{\star} is a minimizer if and only if 0 is a subgradient of f at x^{\star}. This is called the subgradient optimality condition

Why? Easy: $g=0$ being a subgradient means that for all y

$$
f(y) \geq f\left(x^{\star}\right)+0^{T}\left(y-x^{\star}\right)=f\left(x^{\star}\right)
$$

Note the implication for a convex and differentiable function f, with $\partial f(x)=\{\nabla f(x)\}$

Derivation of first-order optimality

Example of the power of subgradients: we can use what we have learned so far to derive the first-order optimality condition. Recall that for f convex and differentiable, the problem

$$
\min _{x} f(x) \text { subject to } x \in C
$$

is solved at x if and only if

$$
\nabla f(x)^{T}(y-x) \geq 0 \quad \text { for all } y \in C
$$

Intuitively says that gradient increases as we move away from x. How to see this? First recast problem as

$$
\min _{x} f(x)+I_{C}(x)
$$

Now apply subgradient optimality: $0 \in \partial\left(f(x)+I_{C}(x)\right)$

But

$$
\begin{aligned}
0 \in \partial(f(x)+ & \left.I_{C}(x)\right) \\
& \Longleftrightarrow 0 \in\{\nabla f(x)\}+\mathcal{N}_{C}(x) \\
& \Longleftrightarrow-\nabla f(x) \in \mathcal{N}_{C}(x) \\
& \Longleftrightarrow-\nabla f(x)^{T} x \geq-\nabla f(x)^{T} y \text { for all } \in C \\
& \Longleftrightarrow \nabla f(x)^{T}(y-x) \geq 0 \text { for all } y \in C
\end{aligned}
$$

as desired
Note: the condition $0 \in \partial f(x)+\mathcal{N}_{C}(x)$ is a fully general condition for optimality in a convex problem. But this is not always easy to work with (KKT conditions, later, are easier)

Example: lasso optimality conditions

Given $y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times p}$, lasso problem can be parametrized as:

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

where $\lambda \geq 0$. Subgradient optimality:

$$
\begin{aligned}
& 0 \in \partial\left(\frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}\right) \\
& \Longleftrightarrow 0 \in-X^{T}(y-X \beta)+\lambda \partial\|\beta\|_{1} \\
& \Longleftrightarrow X^{T}(y-X \beta)=\lambda v
\end{aligned}
$$

for some $v \in \partial\|\beta\|_{1}$, i.e.,

$$
v_{i} \in \begin{cases}\{1\} & \text { if } \beta_{i}>0 \\ \{-1\} & \text { if } \beta_{i}<0, \quad i=1, \ldots p \\ {[-1,1]} & \text { if } \beta_{i}=0\end{cases}
$$

Write $X_{1}, \ldots X_{p}$ for columns of X. Then subgradient optimality reads:

$$
\begin{cases}X_{i}^{T}(y-X \beta)=\lambda \cdot \operatorname{sign}\left(\beta_{i}\right) & \text { if } \beta_{i} \neq 0 \\ \left|X_{i}^{T}(y-X \beta)\right| \leq \lambda & \text { if } \beta_{i}=0\end{cases}
$$

Note: the subgradient optimality conditions do not directly lead to an expression for a lasso solution ... however they do provide a way to check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if $\left|X_{i}^{T}(y-X \beta)\right|<\lambda$, then $\beta_{i}=0$

Example: soft-thresholding

Simplfied lasso problem with $X=I$:

$$
\min _{\beta \in \mathbb{R}^{n}} \frac{1}{2}\|y-\beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

This we can solve directly using subgradient optimality. Solution is $\beta=S_{\lambda}(y)$, where S_{λ} is the soft-thresholding operator:

$$
\left[S_{\lambda}(y)\right]_{i}= \begin{cases}y_{i}-\lambda & \text { if } y_{i}>\lambda \\ 0 & \text { if }-\lambda \leq y_{i} \leq \lambda, \quad i=1, \ldots n \\ y_{i}+\lambda & \text { if } y_{i}<-\lambda\end{cases}
$$

Check: from last slide, subgradient optimality conditions are

$$
\begin{cases}y_{i}-\beta_{i}=\lambda \cdot \operatorname{sign}\left(\beta_{i}\right) & \text { if } \beta_{i} \neq 0 \\ \left|y_{i}-\beta_{i}\right| \leq \lambda & \text { if } \beta_{i}=0\end{cases}
$$

Now plug in $\beta=S_{\lambda}(y)$ and check these are satisfied:

- When $y_{i}>\lambda, \beta_{i}=y_{i}-\lambda>0$, so $y_{i}-\beta_{i}=\lambda=\lambda \cdot 1$
- When $y_{i}<-\lambda$, argument is similar
- When $\left|y_{i}\right| \leq \lambda, \beta_{i}=0$, and $\left|y_{i}-\beta_{i}\right|=\left|y_{i}\right| \leq \lambda$

Soft-thresholding in one variable:

Example: distance to a convex set

Recall the distance function to a convex set C :

$$
\operatorname{dist}(x, C)=\min _{y \in C}\|y-x\|_{2}
$$

This is a convex function. What are its subgradients?
Write dist $(x, C)=\left\|x-P_{C}(x)\right\|_{2}$, where $P_{C}(x)$ is the projection of x onto C. Then when $\operatorname{dist}(x, C)>0$,

$$
\partial \operatorname{dist}(x, C)=\left\{\frac{x-P_{C}(x)}{\left\|x-P_{C}(x)\right\|_{2}}\right\}
$$

Only has one element, so in fact $\operatorname{dist}(x, C)$ is differentiable and this is its gradient

We will only show one direction, i.e., that

$$
\frac{x-P_{C}(x)}{\left\|x-P_{C}(x)\right\|_{2}} \in \partial \operatorname{dist}(x, C)
$$

Write $u=P_{C}(x)$. Then by first-order optimality conditions for a projection,

$$
(u-x)^{T}(y-u) \geq 0 \quad \text { for all } y \in C
$$

Hence

$$
C \subseteq H=\left\{y:(u-x)^{T}(y-u) \geq 0\right\}
$$

Claim: for any y,

$$
\operatorname{dist}(y, C) \geq \frac{(x-u)^{T}(y-u)}{\|x-u\|_{2}}
$$

Check: first, for $y \in H$, the right-hand side is ≤ 0

Now for $y \notin H$, we have $(x-u)^{T}(y-u)=\|x-u\|_{2}\|y-u\|_{2} \cos \theta$ where θ is the angle between $x-u$ and $y-u$. Thus

$$
\frac{(x-u)^{T}(y-u)}{\|x-u\|_{2}}=\|y-u\|_{2} \cos \theta=\operatorname{dist}(y, H) \leq \operatorname{dist}(y, C)
$$

as desired
Using the claim, we have for any y

$$
\begin{aligned}
\operatorname{dist}(y, C) & \geq \frac{(x-u)^{T}(y-x+x-u)}{\|x-u\|_{2}} \\
& =\|x-u\|_{2}+\left(\frac{x-u}{\|x-u\|_{2}}\right)^{T}(y-x)
\end{aligned}
$$

Hence $g=(x-u) /\|x-u\|_{2}$ is a subgradient of $\operatorname{dist}(x, C)$ at x

References and further reading

- S. Boyd, Lecture notes for EE 264B, Stanford University, Spring 2010-2011
- R. T. Rockafellar (1970), "Convex analysis", Chapters 23-25
- L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring 2011-2012

