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Introduction to Optimization
Optimization problems are ubiquitous in science and engineering.

Optimization problems arise any time we have a collection of elements
and wish to select the “best” one (according to some criterion). The
process of casting a real world problem as being one of mathematical
optimization consists of three main components

1. a set of variables, often called decision variables, that we
have control over;

2. an objective function that maps the decision variables to
some quality that we want to maximize (goodness of fit, profit,
etc.) or some cost that we want to minimize (error, loss, etc.);
and

3. a constraint set that dictates restrictions on the decision
variables imposed by physical limitations, budgets on resources,
design requirements, etc.

In its most general form, we can express such an optimization prob-
lem mathematically as

minimize f(x) subject to x € X, (1)

xr

where f : X — R is our objective function and X is our constraint
set.

In order to solve this optimization problem, we must find an & € X
such that
f(@) < f(x) forall x € X. (2)

We call an & satisfying (2) a minimizer of f in X, and a solution
to the optimization problem (1).
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By convention, we will focus only on menimization problems, noting
that & mazrimizes f in X if and only if & minimizes — f in X — thus
any maximization problem can be easily turned into an equivalent
minimization problem.

There are a number of fundamental questions that arise when con-
sidering an optimization problem of the form (1):

1. Existence. Does a solution to (1) even exist? It could be that
f is not bounded from below, or that X has been defined in
such a way as to be empty. How can we guarantee the existence
of a solution?

2. Uniqueness. Note that an & satisfying (2) need not be
unique. Only when the inequality is strict can we conclude
that there is a unique (strict) minimizer. When can we con-
clude that there is a unique solution?

3. Verification. Given a candidate solution &, is there a simple
condition we can check to determine if it is a/the solution to

to (1)7

4. Solution. Can we find a closed-form expression for a/the
solution to (1)? Can we provide an efficient algorithm for com-
puting a/the solution to (1)?

Throughout this course we will devote significant attention to all of
these questions, primarily in the context of convex problems.
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Convex Optimization

The great watershed in optimization s not between linearity and

non-linearity, but convexity and non-convezity.
— R. Tyrrell Rockafellar

Solving optimization problems is in general very difficult. In this
class, we will develop a framework for analyzing and solving convex
programs.! To state precisely what we mean by this, recall that a
set C is convex if

z,ycC = (1-0x+0yeccC
for all 8 € [0,1]. A function f is convex if

fOx+(1—-0)y) < 0f(x)+(1—06)f(y)

for all &,y and for all 8 € [0, 1]. (If either of these notions are new
to you, don’t worry. We will have much more on this later!) With
these definitions in hand, a convex program simply corresponds to
one where

1. The constraint set X is a convex subset of a real vector space
(in this class we will focus exclusively on X C RY).

2. The objective function f : X — R is a convex function.

Often (but not always) we will specify X’ using a set of constraint
functionals:

reX & gnlx)<b, form=1,..., M.

'Throughout this course will use the terminology “optimization/convex pro-
gram” interchangeably with “optimization/convex problem.”

3

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 11:59, August 23, 2021



In this case, an equivalent way to characterize a convex program is
for each of the g,, to be convex functions.

What does convexity tell us? Two important things:

e [ocal minimizers are also global minimizers. So we can check
if a certain point is optimal by looking in a small neighborhood
and seeing if there is a direction to move that decreases f.

e First-order necessary conditions for optimality turn out to be
sufficient. For example, when the problem is unconstrained and

smooth, this means we can find an optimal point by finding a*
such that V f(x*) = 0.

The upshot of these two things is that if f(a) and its derivative (as
well as the g,,(x) and their derivatives in the case of a constrained
problem)* are easy to compute, then relatively simple algorithms
(e.g., gradient descent) are provably effective at performing the op-
timization.

The material in this course has three major components. The first
is the mathematical foundations of convex optimization. We will
see that talking about the solution to convex programs requires a
beautiful combination of algebraic and geometric ideas.

The second component is algorithms for solving convex programs.
We will talk about general purpose algorithms (and their associated
computational guarantees), but we will also look at algorithms that
are specialized to certain classes of problems, and even certain appli-
cations. Rather than focus exclusively on the “latest and greatest”,
we will try to understand the key ideas that are combined in different
ways in many solvers.

2And as we will see, much of what we do can be naturally extended to
non-smooth functions which do not have any derivatives.
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Finally, we will talk a lot about modeling. That is, how convex
optimization appears in signal processing, control systems, machine
learning, statistical inference, etc. We will give many examples of
mapping a word problem into an optimization program. These ex-
amples will be interleaved with the discussion of the first two compo-
nents, and there are several examples which we may return to several
times.

Convexity and Efficiency

Before going any further, there are two natural questions that you
might have that we ought to explicitly address.

Can all convex programs be solved efficiently?

Unfortunately, no. There are many examples of even seemingly in-
nocuous convex programs which are NP-hard. One way this can
happen is if the objective function f and/or its derivative themselves
are hard to compute. For example, consider the (oo, 1) norm:

f(X) = [[Xloca = max || Xv;.

[0]loo<1

This is a valid matrix norm, and we will see later that all valid
norms are convex. But it is known that computing f is NP-hard
(see | ]), as is approximating it to a fixed accuracy. Thus, op-
timization problems involving this quantity (as either the objective
function or in the constraints) are bound to be difficult, despite being
convex.

Are there any non-convex programs that can be solved
efficiently?
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Of course there are. Here is one for which you already know the
answer:
maximize &' Az subject to ||z, = 1,
xeRN

where A is an arbitrary N X N symmetric matrix. This is the
mazimization of an indefinite quadratic form (not necessarily convex
or concave) over a nonconvex set. But we know that the optimal
value of this program is the largest eigenvalue, and the optimizer
is the corresponding eigenvector, and there are well-known practical
algorithms for computing these.

When there is a solution to a nonconvex program, it often times relies
on nice coincidences in the structure of the problem — perturbing
the problem just a little bit can disturb these coincidences. Consider
another nonconvex program that we know how to solve:

N
minimize Z(Xm- — A; ;) subject to rank(X) < R.

1,j=1

That is, we want the best rank- R approximation (in the least-squares
sense) to the NV x N matrix A. The functional we are optimizing
above is convex, but the rank constraint definitely is not. Neverthe-
less, we can compute the answer efficiently using the SVD of A:

N
A:UEVT:ZUHUH’UE, o> 09>+ >0, > 0.

n=1

The program above is solved simply by truncating this sum to its
first R terms:

R
* T
X" = E o8 T3
n=1
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But now suppose that instead of the matrix A, we are given a subset
of its entries indexed by Z. We now want to find the matrix that is
most consistent over this subset while also having rank at most R:

minimize Z (X;; — A; ;)7 subject to rank(X) < R.

(i,7)€Z

Despite its similarity to the first problem above, this “matrix com-
pletion” problem is NP-hard in general.

Convex programs tend to be more robust to variations of this type.
Things like adding subspace constraints, restricting variables to be
positive, and considering functionals of linear transforms of x all
preserve the essential convex structure.

Note, however, that nonconvex problems can often still be solved in
many cases. For instance, consider the “matrix completion” problem
described above. Despite being NP-hard in general, there are im-
portant special cases where we can still solve this problem efficiently.
One common trick for dealing with non-convex problems that works
here and that we will see later in this course is convex relaxation.
This approach replaces a non-convex constraint (e.g., the rank con-
straint above) with a (cleverly chosen) convex surrogate. In some
cases (e.g., for a restricted class of matrices A above) one can show
that the convex relaxation will have the same solution as the original
non-convex problem:.

Another approach to non-convex optimization, and one that is popu-
lar both in solving the matrix completion problem above as well as in
training neural networks, is to simply ignore this non-convexity and
to apply standard algorithms like gradient descent that, while derived
with convex problems in mind, do not explicitly require convexity to
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be applied. While we lose the kinds of theoretical guarantees that
we will derive for the convex case, these can still be effective tools in
practice.

Next we continue our introduction to convex optimization by intro-
ducing a few of the very well-known classes of convex optimization
programs and giving some example applications.

Examples of convex optimization problems

Before we dig deeper into the mathematical and algorithmic details
of convex optimization, we will start with a very brief tour of common
categories of convex optimization problems, giving a few practical ex-
amples where each arises. This discussion is by no means exhaustive,
but is merely intended to help you to have some concrete examples
in the back of your mind where the techniques we will soon start
developing can be applied.

Linear programming

Perhaps the simplest convex optimization problem to write down
(although not necessarily the easiest to solve) is a linear program
(LP). An LP minimizes a linear objective function subject to multiple
linear constraints:

minimize ¢'x subject to a.x <b,, m=1,..., M.

xr

The general form above can include linear equality constraints aj @ =
b; by enforcing both alx < b; and (—a;)*x < b; — in our study
later on, we will find it convenient to specifically distinguish between
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these two types of constraints. We can also write the M constraints
compactly as Az < b, where A is the M x N matrix with the a
as TOWS.

Linear programs do not necessarily have to have a solution; it is
possible that there is no « such that Ax < b, or that the program
is unbounded in that there exists a series x, x,,..., all obeying
Az, < b, with lime'z, — —o0.

There is no formula for the solution of a general linear program.
Fortunately, there exists very reliable and efficient software for solving
them. The first LP solver was developed in the late 1940s (Dantzig’s
“simplex algorithm”), and now LP solvers are considered a mature
technology. If the constraint matrix A is structured, then linear
programs with millions of variables can be solved to high accuracy
on a standard computer.

Linear programs are a very important class of optimization prob-
lems. However, if a single constraint (or the objective function) are
nonlinear, then we move into the much broader class of nonlinear
programs. While much of what we will discuss in this course is rel-
evant to LPs, we will spend a greater fraction of the course discussing
these more general nonlinear optimization problems.

Example: Chebyshev approximations

Suppose that we want to find the vector @ so that Aax does not vary
too much in its maximum deviation:

. T _ Ce .
minimize mgllaXM\ym a, x| minimize |y — Az~

This is called the Chebyshev approximation problem.
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We can solve this problem with linear programming. To do this, we
introduce the auxiliary variable © € R — it should be easy to see
that the program above is equivalent to

minimize v subject to v, — a.x < u
zcRN, ueR
Y — Q) T > —1U
m=1,..., M.

To put this in the standard linear programming form, take

iR v B |

and then solve

minimize ¢’z subject to A’z < ¥,
ZeRNJrl

One natural application of this arises in the context of filter design.
The standard “filter synthesis” problem is to find an finite-impulse
response (FIR) filter whose discrete-time Fourier transform (DTFT)
is as close to some target H*(w) as possible.

We can write this as an optimization problem as follows:

minimize sup |H*(w) — H(w)|, subject to H(w) being FIR

we[—m,7]

When the deviation from the optimal response is measured using a
uniform error, this is called “equiripple design”, since the error in the

solution will tend to have ripples a uniform distance away from the
ideal.

If we restrict ourselves to the case where H*(w) has linear phase (so
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the impulse response is symmetric around some time index)® we can
recast this as a Chebyshev approximation problem.

Specifically, a symmetric filter with 2K +1 taps (meaning that h,, = 0
for [n| > K) has a real DTFT that can be written as a superposition
of a DC term plus K cosines:

K
7 ho, ]C — O
_Z hy, cos(kw), hk_{th, < k<K
So we are trying to solve

minimize  sup
c€RFMH el a]

K
— Z xy, cos(kw)
k=0

[t is actually possible to solve this problem as stated — our very own
Jim McClellan worked this out in the early 1970s with his advisor
Tom Parks, developing the now ubiquitous Parks-McClellan filter
design algorithm. The solution is not obvious, however, mostly due
to the presence of supremum over w.

Here, suppose we instead approximate the supremum on the inside

by measuring it at M equally spaced points wy, ..., wy between —7
and 7. Then
K
minimize max | H*(w,,) — Z x, cos(kw,,)| = minimize ||y — Fx| .,
" k=0 ;

3The case with general phase can also be handled using convex optimization,
but it is not naturally stated as a linear program.
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where y € RM and the M x (K + 1) matrix F are defined as

I Hi(wl) ] (1 cos(w;) cos(2wy) -+- cos(Kwy)]
Y — H Ewg) P 1 cos(wo) COS.(Q.(,L)Q) o cos(Kwo)
| H*(way), | |1 cos(wyy) cos(2wyy) -+ cos(Kwyy) ]

[t should be noted that since the w,, are equally spaced, the matrix F’
(and its adjoint) can be applied efficiently using a fast discrete cosine
transform. This has a direct impact on the number of computations
we need to solve the Chebyshev approximation problem above.

12
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Least squares

A prototypical example of a nonlinear convex optimization problem
is least squares. Specifically, given a M x N matrix A and a
vector y € RM | the unconstrained least squares problem is given by

inimi — Axz|?. 3
minimize ||y — Azl (3)

When A has full column rank (and so M > N), then there is a
unique closed-form solution:

T = (ATA)_lATy.
We can also write this in terms of the SVD of A=UXVT:
Tr = VE_lUTy.

The mapping from the data vector y to the solution Z is linear, and
the corresponding N x M matrix VEIUT is called the pseudo-
inverse.

When A does not have full column rank, then the solution is non-
unique. An interesting case is when A is underdetermined (M < N)
with rank(A) = M (full row rank). Then there are many x such
that y = Az and so ||y — Ax||2 = 0. Of these, we might choose
the one which has the smallest norm:

minimize ||zl subject to Ax =y.
xeRN

It turns out that the solution is again given by the pseudo-inverse.
We can still write A = UXV'!, where X is M x M, diagonal, and
invertible, U is M x M and V is N x M. Then £ = VX 'U'y
find the shortest vector (in the Euclidean sense) that obeys the M
specified linear constraints.

13
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Example: Regression

A fundamental problem in statistics is to estimate a function given
point samples (that are possibly heavily corrupted). We observe pairs
of points® (z,,, ym) for m = 1,..., M, and want to find a function

f(z) such that

flzn) = Yp, m=1,..., M.

Of course, the problem is not well-posed yet, since there are any
number of functions for which f(x,,) = y,, exactly. We regularize
the problem in two ways. The first is by specifying a class that f(-)
belongs to. One way of doing this is by building f up out of a linear
combination of basis functions ¢,/(+):

flz) = Z ().

We now fit a function by solving for the expansion coefficients a.
There is a classical complexity versus robustness trade-off in choosing
the number of basis functions V.

The quality of a proposed fit is measured by a loss function — this

loss is typically (but not necessarily) specified pointwise at each of
the samples, and then averaged over all the sample points:

| M
Loss(a; @, y) = — g (T, Ym)-
M ~

*We are just considering functions of a single variable here, but it is easy to
see how the basic setup extends to functions of a vector.
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One choice for £(+) is the squared-loss:

which is just the square between the difference of the observed value
Y, and its prediction using the candidate a.

We can express everything more simply by putting it in matrix form.
We create the M x N matrix ®:

[ O1(z1)  Go(w1) - dn(w1) ]
d — P1(x2)  P2(2) On (1)

| D1(Tar) o) On(Tar)

® maps a set of expansion coefficients a € R to a set of M pre-
dictions for the vector of observations y € R. Finding the o
that minimizes the squared-loss is now reduced to the standard least
squares problem:

minimize ||y — Perff;

It is also possible to smooth the results and stay in the least squares
framework. If @ is ill-conditioned, then the least squares solution
might do dramatic things to a to make it match y as closely as
possible. To discourage this, we can penalize ||a||s:

minimize ||y — ®a? + 7|,
acRN

where 7 > 0 is a parameter we can adjust. This can be converted
back to standard least squares problem by concatenating (/7 times)
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the identity to the bottom of ® and zeros to the bottom of y. At
any rate, the formula for the solution to this program is

"= (®'®+7I) Dy,

This is called ridge regression in the statistics community (and
Tikhonov reqularization in the linear inverse problems community).

Another strategy in such cases is to choose a slightly different regu-
larizer and penalize ||a||;:

minimize ||y — @alf; + 7] ee;.
acRN
This is most commonly known as the LASSO (for “least absolute
shrinkage and selection operator”). This small change can have a
dramatic impact in the properties of the resulting solution. In partic-
ular, it is an effective strategy for promoting sparsity in the solution
. This is useful in a variety of circumstances, and is something we
will return to later in this course.

Note, however, that unlike ridge regression/Tikhonov regularization,
the LASSO no longer has a closed form solution. Moreover, the term
involving ||e||; is not differentiable. Optimization problems like this
are an important class of problems, and one that we will devote
significant attention to later in this course.

16
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Quadratic programming

Let us briefly return to our standard least squares problem in (3). It
is easy to show that this is equivalent to the problem of
minimize £' A'Ax — 2y* Ax.
xRN
Suppose you now wanted to enforce some additional structure on a.
For example, you might have reason to desire a solution with only

non-negative values. In adding such a constraint, we arrive at an
example of a quadratic program (QP).

A QP minimizes a quadratic functional subject to linear constraints:

minimize &' Hx + c'x, subject to Az < b.

€T

If H is symmetric positive semidefinite (i.e., symmetric with nonneg-
ative eigenvalues), then the program is convex. If H has even a single
negative eigenvalue, then solving the program above is NP-hard.

QPs are almost as ubiquitous as LPs; they have been used in finance
since the 1950s (see the example below), and are found all over oper-
ations research, control systems, and machine learning. As with LPs,
there are reliable solvers and can be considered a mature technology:.

A quadratically constrained quadratic program (QCQP)
allows (convex) quadratic inequality constraints:

minimize ' Hx + c'x, subject to ' H,,x + c'x < b,

m=1,..., M.

This program is convex if all of the H,, are symmetric positive
semidefinite; we are minimizing a convex quadratic functional over a
region defined by an intersection of ellipsoids.

17
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Example: Portfolio optimization

One of the classic examples in convex optimization is finding invest-
ment strategies that “optimally”® balance the risk versus the return.
The following quadratic program formulation is due to Markowitz,
who formulated it in the 1950s, then won a Nobel Prize for it in 1990.

We want to spread our money over N different assets; the fraction of
our money we invest in asset n is denoted x,,. We have the immediate
constraints that

N
Zaznzl, and 0<z,<1, forn=1,...,N.
n=1

The expected return on these investments, which are usually calcu-
lated using some kind of historical average, is pq,...,ux. The u,
are specified as multipliers, so u, = 1.16 means that asset n has a
historical return of 16%. We specify some target expected return p,

which means
N
> pam, > p.
n=1

We want to solve for the x that achieves this level of return while
minimizing our risk. Here, the definition of risk is simply the variance
of our return — if the assets have covariance matrix R, then the risk
of a given portfolio allocation @ is

M M
Risk(z) = ' Rz = Z Z Ry T,

m=1 n=1

44

T put “optimally” in quotes because, like everything in finance and the
world, this technique finds the optimal answer for a specified model. The
big question is then how good your model is ...
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Our optimization program is then®

minimize ' Rx
Xr

subject to plx > p
1'z =1
0<x<1.

This is an example of a QP with linear constraints. It is convex since
the matrix R is a covariance matrix, and so by construction it is
symmetric positive semidefinite.

Example: Support vector machines

Support vector machines (SVMs) are a classical approach for
designing a classifier in machine learning, and involves solving an
optimization problem that we will revisit again in more detail later
on in the course. An SVM takes as input a dataset {(x;,y;)} with
x; € RN and Yi € {—1, +1}

The goal of the SVM is to find a vector w € RY and a scalar b € R
that define a separating hyperplane, i.e., a hyperplane that separates
the sets {x; : y; = +1} and {x; : y; = —1}. This can be posed as
constraints on w and b of the form

(] w +b)y; > 1.

Among all separating hyperplanes, it turns out that the one that
minimizes ||wl|5 corresponds to the hyperplane that maximizes the

*Throughout these notes, we will use 1 for a vector of all ones, and O for a
vector of all zeros.
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margin between the two classes, where the margin corresponds to
the distance from the hyperplane to the nearest ;.

Thus, the problem of finding the best (maximum margin) separating
hyperplane reduces to

minimize |w||5 subject to (x}w + b)y; > 1 for all 4.

This is another example of a QP with linear constraints.

Second-order cone programs

A second-order cone program (SOCP) is an optimization prob-
lem where the constraint set forms what is called, perhaps unsurpris-
ingly, a second-order cone. The canonical example of a second-order
cone is the set:

{(@,t),z eRV tER: 2|, < t}.

This is a subset of R¥*!. Here is an example in R?:

t

>
/O I
L9
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The standard form of a SOCP is

minimize ¢ x
xTr

subject to ||A,x +b,l. <clz+d, m=1,..., M.

We have a linear objective function and constraints that require (y, t)
to lie inside the second-order cone, where y and ¢ are allowed to be
any affine function of x.

SOCPs turn out to be much more common than you might initially
expect. First, it is not hard to show that an LP is also a SOCP. It
turns out that QPs and (convex) QCQPs are also SOCPs, so we can
think of SOCPs as a generalization of what we have already seen.
However, the class of possible SOCPs also includes many optimiza-
tion problems beyond what we have seen so far.

Example: Generalized geometric medians

Suppose that we have M points py, . .., py € RY and that we would
like to find the “center” of this set of points. The geometric median
is the point @ that minimizes the sum (or equivalently, average) of
the distances to the points py, ..., py. This can be posed as the
optimization problem

M
minimize Z T — po|2-
m=1
In the case where N = 1, this is equivalent to the standard median.
The special case of M = 3 points in a dimension N > 2 was first
considered by Pierre de Fermat, with Evangelista Torricelli providing
a simple geometric solution in the 17 century. In general, however,
there is no closed-form solution to this problem.
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It is relatively straightforward to show that this problem can be cast
as a SOCP. Specifically, it should be clear that it is equivalent to:

M

minimize t
x,t
m=1

subject to || — pulle < tm, m=1,..., M.

A slight variation on this problem is to try to minimize the maximum
distance from x to the p,,:

minimize  max__||® — p,||o
€T

This too has a simple formulation as a SOCP:
minirtnize t

subject to [ —pulls <t, m=1,..., M.

Semidefinite programs

So far we have typically been looking at problems where we are
optimizing over vectors £ € RY. In many important applications,
our decision variables are more naturally represented as a matrix X.
In such problems, it is common to encounter the constraint that this
matrix X must be positive semidefinite. When the objective function
is linear and we have affine constraints, this is called a semidefinite
program (SDP).

To state the standard form for an SDP, it is useful to introduce some
notation. First, we will let S denote the set of N x N symmetric
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matrices, and S_]\[ the set of symmetric positive semidefinite matrices.
Furthermore, we let

(Y, X) = trace(Y ' X)

denote the (trace) inner product between a pair of matrices.” With
this notation in hand, the standard form for an SDP is given by

minimize (C, X)

X

subject to (A,,, X) <b,, m=1,.... M
X esY,

where C, A,,..., Ay €S.

SDPs are the broadest class of convex problems that we will study
in this course. All of the problems we have looked at so far (LPs,
QPs, SOCPs) can be shown to be special cases of SDPs. We will see
a number of examples of SDPs that arise in applications throughout
the course.

Example: Bounding portfolio risk

Let us briefly return to our previous example or portfolio optimiza-
tion. Before we assumed that we knew the expected returns and the
covariance matrix R for the different assets under consideration, and
our goal was to determine the optimal allocation. Here we consider
a slightly different problem. Suppose that we already have a fixed
allocation @ across the different assets, but rather than knowing the

"This is simply the inner product that would result from reshaping X and
Y into vectors and applying the standard inner product.
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covariance matrix R exactly, we assume that we have only an esti-
mate of R. A natural question is whether we can quantify how large
the true risk of our portfolio might be in such a case.

Suppose that we have confidence intervals on how accurate our co-
variance estimate is of the form

For a given portfolio &, we can compute the maximum possible risk

of that portfolio that is consistent with the given bounds via the
following SDP:

maxli{mize ' Rx
subject to L, < Ry < Uy, myn=1,..., N

Rest.
We have to enforce the constraint that R € Sﬂf because R must be

a covariance matrix, and ignoring this constraint would yield a risk
that is not actually achievable.

References

[Roh00] J. Rohn. Computing the norm || Al ; is NP-Hard. Linear
and Multilinear Algebra, 47:195-204, 2000.
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Convex sets

In this section, we will be introduced to some of the mathematical
fundamentals of convex sets. In order to motivate some of the defini-
tions, we will look at the closest point problem from several different
angles. The tools and concepts we develop here, however, have many
other applications both in this course and beyond.

A set C C RY is convex if
z,yeC = (1—-0x+0yecC forallfel0,1].

In English, this means that if we travel on a straight line between
any two points in C, then we never leave C.

These sets in R? are convex:

@O o

These sets are not:

Sk I

1
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Examples of convex (and nonconvex) sets

e Subspaces. Recall that if S is a subspace of R, then
x,ycS =ax+by c Sforall a,beR.
So S is clearly convex.

o Affine sets. Affine sets are just subspaces that have been offset
by the origin:

{xeRY : z=y+v, ye T}, T =subspace,

for some fixed vector v. An equivalent definition is that

x,y <€ C=0x+(1—0)yecC forall € R — the difference
between this definition and that for a subspace is that subspaces
must include the origin.

e Bound constraints. Rectangular sets of the form
C:{:I:GRN:€1 < <up, by <xg <y, ... 0y <zy <uy}

for some ¢y, ... . {n,uq, ..., uxy € R are convex.
o The “filled in” simplex in RY

{:I:ERN:331+:132+---+:1:N§1, :1:1,3:2,...,:1:]\;20}

1S convex.

o Any subset of RY that can be expressed as a set of linear in-
equality constraints

{x cRY: Az < b}

is convex. Notice that both rectangular sets and the simplex

2
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fall into this category — for the previous example, take

1 1 1 - 1 1
~10 0 - 0 0
A=|0 =10 - 0 |, b=10
_O _1_ _O_

In general, when sets like these are bounded, the result is a
polyhedron.

Norm balls. If || - || is a valid norm on RY, then
B, ={z : |z]| <r},

1S a convex set.

Ellipsoids. An ellipsoid is a set of the form
E={x : (x—x)"P ' (x—x) <7},

for a symmetric positive-definite matrix P. Geometrically, the
ellipsoid is centered at xg, its axes are oriented with the eigen-
vectors of P, and the relative widths along these axes are pro-
portional to the eigenvalues of P.

A single point {a} is convex.
The empty set is convex.

The set
{mER2 ; x%—2x1—x2—i—1§0}

is convex. (Sketch it!)

3
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The set
{xeR® : 27— 21, —2,+1>0}

1S not convex.

The set
{reR® : 2" — 22 —2,+1=0}

is certainly not convex.

Sets defined by linear equality constraints where only some of
the constraints have to hold are in general not convex. For
example

{:UER2 cx— 2 < —1 and x4+ 1y < —1}
is convex, while
{reR® : 2y -2, < —1 or o +2, < —1}

1S not convex.

Cones

A cone is a set C such that

reC = 0OxeC foralb>D0.

Convex cones are sets which are both convex and a cone. C is a
convex cone if

L1, T € C = 91331 + 92:152 c C for all 91, 92 Z 0.

Given an @, x,, the set of all linear combinations with positive
weights makes a wedge. For practice, sketch the region below that
consists of all such combinations of x; and x,:

4
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T2

Iq

We will mostly be interested in proper cones, which in addition to
being convex, are closed, have a non-empty interior' (“solid”), and
do not contain entire lines (“pointed”).

Examples:

Non-negative orthant. The set of vectors whose entries are non-
negative,

RY ={xeR" : z,>0, forn=1,...,N},
1S a proper cone.

Positive semi-definite cone. The set of N X N symmetric matri-
ces with non-negative eigenvalues is a proper cone.

Non-negative polynomials. Vectors of coefficients of non-negative
polynomials on [0, 1],

{x e RY : xyt+mot+ast’+ - 4yt >0 forall0 < ¢ < 1},

form a proper cone. Notice that it is not necessary that all
the x, > 0; for example t — t* (x; = 0,29 = 1,253 = —1) is
non-negative on [0, 1].

Norm cones. The subset of RV defined by

{(z,t), x cRY, teR : [z| <t}

'See Technical Details for precise definition.

D
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is a proper cone for any valid norm || - || and ¢ > 0. (We
encountered this cone in our discussion about SOCPs in the
last set of notes.)

Every proper cone IC defines a partial ordering or generalized
inequality. We write

x <xy when y—xeck.
For example, for vectors @,y € RY, we say
x gy Yy when =z, <y, foralln=1,..., N.
For symmetric matrices X, Y, we say
X =svY when Y — X has non-negative eigenvalues.

We will typically just use < when the context makes it clear. In fact,
for RY we will just write & < y (as we did above) to mean that
the entries in & are component-by-component upper-bounded by the
entries in y.

Partial orderings obey share of the properties of the standard < on
the real line. For example:

r=y, u=v = xT+uyYy-+wo.

But other properties do not hold; for example, it is not necessary
that either & < y or y < x. For an extensive list of properties of

partial orderings (most of which will make perfect sense on sight) can
be found in | , Chapter 2.4].

6

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 15:03, September 6, 2021



Affine sets

Recall the definition of a linear subspace: a set 7 C R¥ is a subspace
if
z,ycT = ax+pycT, foralapekR.

Affine sets (also referred to as affine spaces) are not fundamentally
different than subspaces. An affine set § is simply a subspace that
has been offset from the origin:

S:T+U0,

for some subspace T and v, € RY. (It thus make sense to talk
about the dimension of S as being the dimension of this underlying
subspace.) We can recast this as a definition similar to the above: a
set S C RY is affine if

r,ycS = M+ (1-NyesS, forall A\ e R.

Just as we can find the smallest subspace that contains a finite set
of vector {vy, ..., v} by taking their span,

K
Span({vy,...,vx}) = {.’B cRY  x= Zakvk, ap € ]R} :

k=1

we can define the affine hull (the smallest affine set that contains
the vectors) as

K K
Aff({vl,...,vK})—{wERN . QZZZ)\kUk, )\kER, Z)\k—l}
k=1 k=1

e[ o[

7
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Then Span({v, v,}) is all of R? while Aff({v,, v,}) is the line that
connects v, and v,

Aff({v,v}) ={x €R* : 71+ 3y =1}.

Just as any linear subspace 7 of dimension K can be described using
a homogeneous set of equations,

xeT & Ax =0,

using any (N — K) x N matrix A whose nullspace is T, any affine
set & of dimension K can be described as the solution to a linear
system of equations

resS & Ax =0,

for some (N — K) x N matrix A and b € RV X,

It should be clear that every subspace is an affine set, but not every
affine set is a subspace. It is easy to show that an affine set is a
subspace if and only if it contains the 0 vector.

Affine sets are of course convex.

Hyperplanes and halfspaces

Hyperplanes and halfspaces are both very simple constructs, but they
will be crucial to our understanding to convex sets, functions, and
optimization problems.

A hyperplane is an affine set of dimension N — 1; it has the form

{xecRY : (x,a) =t}

8
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for some fixed vector @ # 0 and scalar t. When ¢ = 0, this set is
a subspace of dimension N — 1, and contains all vectors that are
orthogonal to a. For t # 0, this is an affine space consisting of all
the vectors orthogonal to @ (call this set A*) offset to some

{xeRY : (z,a)=t}={xcR" : z=x,+ A"},

for any @y with (@, a) = t. We might take xy = ¢ - a/||a|3, for
instance. The point is, a is a normal vector of the set.

Here are some examples in R?:

A halfspace is a set of the form
{x cRY : (x,a) <t}

for some fixed vector @ # 0 and scalar t. For ¢ = 0, the halfspace
contains all vectors whose inner product with a is negative (i.e. the
angle between @ and a is greater than 90°). Here is a simple example:

9
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Separating hyperplanes

[f two convex sets are disjoint, then there is a hyperplane that sepa-
rates them. Here is a picture:

This fact is intuitive, and is incredibly useful in understanding the
solutions to convex optimization programs (we will see this even in

10
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the next section). It is also not true in general if one of the sets is
nonconvex; observe:

For sets C, D C RY, we say that a hyperplane H = {x : (x,a) =t}
o separates C and D ifforalle € C, d € D
(c,a) <t <(d,a) forall ceC, deD; (1)

e properly separates C and D if (1) holds and both C and D are
not contained in H themselves;

o strictly separates C and D if
(c,a) <t<(d,a) forall ceC, de D;

o strongly separates C and D if there exists € > 0 such that
(c,a) <t—e and (d,a) >t+e forall ceC, deD.

Note that we can switch the roles of C and D above, i.e. we also say
H separates C and D if (d,a) <t < (c,a) forallce C,d € D.

Let us start by showing the following;:

11
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Strong separating hyperplane theorem
Let C and D be disjoint nonempty closed convex sets and let C

be bounded. Then there is a hyperplane that strongly separates
C and D.

To prove this, we show how to explicitly construct a strongly sepa-
rating hyperplane. Let d(ax, D) be the distance of a point & to the

set D:
d(x,D) = ;211; |z — yl|o

As we will see below, since D is closed, there is a unique closest point
to & that achieves the infimum on the right. It is also true that
d(x, D) is continuous as a function of @, so by the Weierstrauss ex-
treme value theorem it achieves its minimum value over the compact
set C. That is to say, there exist points ¢ € C and d € D that
achieve the minimum distance

le=dlls = inf flz—yl,

xeC,yeD

Since C and D are disjoint, we have ¢ — d # 0.
Define

omde g Bl | lle—dl
2 2

Here is a picture to help visualize these quantities:

12
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{x : (x,a) = t}

a=d-—-c
_lldl3 — lll3

t
2

We will show that for these choices,
(x,a) <t—e€ forxel, (x,a) >t+e forxeD,
for e = ||le — d||3/2. To see this, we will set
flx) ={x,a) -1,
and show that for any point u € D, we have f(u) > €.

First, we prove the basic geometric fact that for any two vectors @, y,
if ||x+0y|2> ||x|z foral 8€0,1] then (x,y)>0. (2)
To establish this, we expand the norm as
&+ 0yll2 = 22+ 02 [y 2 + 20 (. ),
from which we can immediately deduce that

7
iHyHS + (x,y) >0 forall 6¢€]0,1]
= (z,y) 2 0.

13
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Now let w be an arbitrary point in D. Since D is convex, we know
that d + 0(u — d) € D for all § € [0, 1]. Since d is as close to ¢ as
any other point in D, we have

ld+0(u—d)—cl, = |ld—c|
and so by (2), we know that
(d—c,u—d) > 0.

This means

fw) = (u,d — c) — 191 . lell
Cud—e)—dFred-o
| >

=(u—(d+c)/2, d—c)
=(u—d+d/2—c/2, d—c)
= {

—dll?
w—dd—cy+ e dlb

_lle—dj?
— 2 M

2

The argument that f(v) < —e for every v € C is exactly the same.

We will not prove it here, but there is an even more interesting result
that says that the sets C and D do not even have to be disjoint —
they can intersect at one or more points along their boundaries as
shown here:

14
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Separating hyperplane theorem

Nonempty convex sets C, D C R” can be (properly) separated by
a hyperplane if and only if their relative interiors are disjoint:

relint(C) N relint(D) = 0.

See the Technical Details for what exactly is meant by “relative in-
terior” but it is basically everything not on the natural boundary of
the set once we account for the fact that it might have dimension
smaller than V.

15
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Supporting hyperplanes

A direct consequence of the separating hyperplane theorem is that
every point on the boundary of a convex set C can be separated from
its interior.

If @ # 0 satisfies (x, a) < (xy,a) for all x € C, then
H={x: (x,a) = (xy,a)}

is called a supporting hyperplane to C at x,. Here’s a picture:

The hyperplane is tangent to C at @y, and the halfspace {x : (x, a) <
(xy,a)} contains C. We call H a proper supporting hyperplane if
(y,a) < (xy,a) for at least one y € C.

The supporting hyperplane theorem says that a supporting hyper-
plane exists at every point @, on the boundary of a (non-empty)
convex set C.

Supporting hyperplane theorem

Let C C RY be a convex set, and let &, € C. Then there is a
supporting hyperplane at @, if and only if @ ¢ relint(C).

16
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Proof of this theorem (and the general separating hyperplane theo-
rem above) can be found in [Roc70, Chap. 11].

Note that there might be more than one supporting hyperplane at
an boundary point:

The closest point problem

Let &, € RY be given, and let C be a non-empty, closed, convex set.
The projection of x, onto C is the closest point (in the standard
Euclidean distance, for now) in C to xy:

Pe(xy) = argmin ||xy — y||2
yeC

We will see below that there is a unique minimizer to this problem,
and that the solution has geometric properties that are analogous to
the case where C is a subspace.

Projection onto a subspace

Let’s recall how we solve this problem in the special case where
C = T is a K-dimensional subspace. In this case, the solution

17
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x = Pr(x) is unique, and is characterized by the orthogonality
principle:

ryg— QAJ‘ J_ T
meaning that (y,x, — @) = 0 for all y € T. The proof of this fact
is reviewed in the Technical Details section at the end of these notes.

The orthogonality principle leads immediately to an algorithm for
calculating Pr(xg). Let vy,..., v be a basis for T; we can write
the solution as

solving for the expansion coefficients «y, is the same as solving for .
We know that

K
(xy — Zozj'vj,vk} =0, fork=1,... K,
j=1
and so the a; must obey the linear system of equations
K
Zozj@j,vk) = (@, vp), fork=1,... K.
j=1

Concatenating the v, as columns in the NV x K matrix V', and the
entries ay, into the vector o € RY, we can write the equations above

as
ViVa=V'x,.

Since the {vy} are a basis for T (i.e. they are linearly independent),
V'V is invertible, and we can solve for the best expansion coeffi-
cients:

a=(V'V) Vi,

18

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 15:03, September 6, 2021



Using these expansion coefficient to reconstruct @ yields
r=Va=VV'V)'V'ig,.

In this case, the projector Pr(-) is a linear map, specified by N x N
matrix V(V'V)"'vh

Projection onto an affine set

As discussed above, affine sets are not fundamentally different than
subspaces; any affine set C can be written as a subspace T plus an
offset vy:

C=T+vo={x : x=y+wvy, yecC}

This makes it easy to translate the results for subspaces above to
say that the projection onto an affine set is unique, and obeys the
orthogonality principle

(y—&,xo—2) =0, foral yeC. (3)

You can solve this problem by shifting @, and C by negative vy,
projecting @, — vy onto the subspace C — vy, and then shifting the
answer back.

Projection onto a general convex set

In general, there is no closed-form expression for the projector onto
a given convex set. However, the concepts above (orthogonality,
projection onto a subspace) can help us understand the solution for
an arbitrary convex set.

19
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Uniqueness of closest point

If C C RY is closed and convex, then for any x, the program

minimize o — yl|2 (4)

has a unique solution.

First, let’s argue that at least one minimizer to (4). Let &’ be any
point in C, and set B = {x : | — x| < || — xll2}. By
construction, if a minimizer exists, it must be in the set C N B. Since
CNB is closed and bounded and ||&q—y||2 is a continuous function of
y, by the Weierstrass extreme value theorem we know that there is at
least one point in the set where this functions achieves it minimum.
Hence there exists at least one solution @ to (4).

We can now argue that |hata is the only minimizer of (4). Consider
first all the points y € C such that y — x, is co-aligned with & — x,.
Let

I={aeR : z+alxy—=x)cC}.

(Note that if y = & + a(xy — &), then y — xy = (1 — a)(x — x)
and so the two difference vectors are co-aligned.) Since C is convex
and closed, this is a closed interval of the real line (that contains at
least the point & = 0). The function

A

2= (1—a)zo — 2|,

29

gla) = |y — & — a(zs — T)

captures the distance of the co-aligned vector for every value of a.
Since, as a function of «, this a parabola with strictly positive second
derivative, it takes its minima at exactly one place on the interval
7 and by construction this is & = 0. So any y # @ with y — x,
co-aligned with & — @y cannot be another minimizer of (4).

20
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Now let y be any point in C such that the difference vectors are not
co-aligned. We will show that y cannot minimize (4) because the
point /2 + y/2 € C is definitively closer to x,. We have

' r vy 2 Ty— T XTH—Y 2
Ty — — — =|| =
2 2|, 2 2 5
_ o — I3 N IIwo—QH§+ (g — T, ) — Y)
4 4 2
— A2 — 412 A _
lwo— @l o= gl llm — s 2o —
4 4 2
. 2
- (Il Lol
2 2
< |lzo — yll5-

The strict inequality above follows from Cauchy-Schwarz, while the
last inequality follows from the fact that @ is a minimizer. This shows
that no y # @ can also minimize (4), and so & is unique.

Similar to the orthogonality principle for projecting onto an affine
set or linear space, there is a clean geometric optimality condition
for the closest point in a convex set.

Obtuseness principle

Pe(xy) =  if and only if

(y— @, xo— &) <0 foral yeC. (5)

Compare (5) with (3) above. Here is a picture:

21
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We first prove that (5)= Fe(xy) = . For any y € C, we have
ly —zoll5 = lly — & + & — x0ll5
= lly — @l + [|& — oll; + 2(y — &, 2 — x0)
> & — @l + 2y — &, & — @)

Note that the inner product term above is the same as (5), but with
the sign of the second argument flipped, so we know this term must
be non-negative. Thus

ly — zoll; > (|12 — @oll2.
Since this holds uniformly over all y € C, & must be the closest point

in C to ax.

We now show that Pe(xy) = & = (5). Let y be an arbitrary point
in C. Since C is convex, the point & + 0(y — &) must also be in C
for all @ € [0,1]. Since & = Pe(xy),

By our intermediate result (2) a few pages ago, this means

(y—xz,x—x)) >0 = (y—2,2d—2) < 0.

22
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Technical Details: closest point to a subspace

In this section, we establish the orthogonality principle for projection
of a point @y onto a subspace T . Let & be a vector which obeys

e=x—x 1 T.

We will show that @ is the unique closest point to &y in 7. Let y
be any other vector in 7, and set

e=x—y.
We will show that

lell > [lefl (e that lz —yl| > [l — ).

Note that
’2

lell* = [lz —y|* = le — (y — @)
=(e—(y—x), e—(y—x)

e 2+Hy_iH2_<évy_®>_<y_ivé>'

Sincey—x €T ande LT,

<é7y_i>:()7 and <y—ﬁ37é>zo7

and so
2

lel* =

Since all three quantities in the expression above are positive and

tly — @

e

we see that
y#x < |e]>|e|.

We leave it as an exercise to establish the converse; that if (y, & —
xo) = 0 for all y € T, then & is the projection of &, onto T.

23
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Technical Details: Basic analysis in RY

This section contains a brief review of basic topological concepts in
RY. Our discussion will take place using the standard Euclidean
distance measure (i.e. ¢, norm), but all of these definitions can be
generalized to other metrics. An excellent source for this material is

[Rud76].

Basic topology

We say that a sequence of vectors {x;, k =1,2,...} converges to
x if

ey —x|s >0 as k — oc.
More precisely, this means that for every € > 0, there exists an n,

such that
|z — x||s <€ forall k>n,.

It is easy to show that a sequence of vectors converge if and only if
their individual components converge point-by-point. For a conver-
gent sequence like the above, we often write lim_,., ) = .

A set X is open if we can draw a small ball around every point in
X which is also entirely contained in X'. More precisely, let B(x, €)
be the set of all points within € of x:

B(z.e) ={y eR" : |lz —yll» < e}

Then X is open if for every @ € X, there exists an €, > 0 such that
B(x,e,) C X. The standard example here is open intervals of the
real line, e.g. (0,1).

There are many ways to define closed sets. The easiest is that a
set X is closed if its complement is open. A more illuminating (and
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equivalent) definition is that X" is closed if it contains all of its limit
points. A vector & is a limit point of X if there exists a sequence
of vectors {x;} C X that converge to .

The closure of general set X', denoted cl(X), is the set of all limit
points of X. Note that every & € X is trivially a limit point (take
the sequence &, = x), so X C cl(X). By construction, cl(X) is the
smallest closed set that contains X

The set X is bounded if we can find a uniform upper bound on
the distance between two points it contains; this upper bound is
commonly referred to as the diameter of the set:

diam X = sup ||z — yl|o.

r,YycX

The set X C RY is compact if it is closed and bounded. A key
fact about compact sets is that every sequence has a convergent sub-
sequence — this is known as the Bolzano-Weierstrauss theorem.

Interiors and boundaries of sets

Related to the definition of open and closed sets are the technical
definitions of boundary and interior. The interior of a set X is the
collection of points around which we can place a ball of finite width
which remains in the set:

int(X)={x e X : Je >0 such that B(x,e) C X}.

We will actually be more concerned with the concept of relative
interior. Let’s motivate this quickly with an example. Consider
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the unit simplex in R?
A:{wER?’ . $1+ﬂ?2+$3:1, 33120}

This is essentially a “flat” (two dimensional) triangle embedded into
three dimensional space. Here is a picture:

By the technical definition of interior above, no point in A is an
interior point, as any ball drawn around a xy € A will contain points
points with 2y + x5+ x3 # 1. But somehow this does not capture the
fact that the 2D triangle itself has “points on the edges” and “points
in the middle”.

To rectify this, we introduce the relative interior of a set as
relint(X) = {&¢ € X : Je > 0 such that B(x,e) N Aff(X) C X}

where Aff(X') is the smallest affine set that contains X. This means
that if the set we are analyzing can be embedded in a low-dimensional
affine space, then we define interior points relative to this set. For
the simplex, we have

AH(A) = {m DX+ X9+ X3 = 1},

and
relint(A) = {x € A : 21,29, 23 > 0}.
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For convex sets, we also have the equivalent and perhaps more intu-
itive definition of relative interior,

relint(C) = {x € C : Jy € C, I\ > 1 such that Ax+(1-\)y € C}.

The boundary of & is the set of points in cl(X') that are not in the
(relative) interior:

bd(X) = cl(X)\ relint(X).

Functions, continuity, and extrema

A function f : RY — R is continuous if for every € > 0 there
exists a 0 > 0 such that

[Ty —xo][o <0 = |f(z1) — flz2)| <

for all x;, x5. f is called Lipschitz if the ¢ can be taken proportional
to €; there exists an L such that

‘f(wl) — f($2)‘ S LH$1 — QZ‘QHQ, fOf all L, To.

A function f is called bounded on a set X if there exists an M such
that |f(x)| < M for all x € X. The supremum of f on X is the
smallest upper bound on f and the infimum of f is that greatest
lower bound. We have these terms since maximizers and minimizers
do not always exist. For example

min e *

x>0
does not exist; there is no value x, that we can choose where we can
definitively say that e™* < e~ for all x > 0. The infimum, however,

always exists:

inf e =0.
x>0
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When there is a point in X where f achieves its infimum, then of
course the operations agree, e.g.

inf (x —1/2)> = min (z — 1/2)* = 0.

2€[0,1] z€[0,1]

[t is also true that every continuous function on a compact set is
bounded. The Weierstrass extreme value theorem tells us
even more; it states that a continuous function always achieves its
infimum (minimizer) and supremem (maximizer) over a compact set
X. That is, there exists x* € X such that

f(x*) = sup f(x),

xeX

and x, € X such that

f(x.) = inf f(a).

xeX

Because of this, we can freely replace sup with max and inf with min.
This might be viewed as a fundamental results in optimization, as it
gives loose conditions
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Convex functions

We have seen what it means for a set to be convex. In this set
of notes, we start working towards what it means to be a convex
function.

To define this concept rigorously, we must be specific about the subset
of RY where a function can be applied. Specifically, the domain
dom f of a function f : RY — RM is the subset of RY where f is
well-defined. We then say that a function f is convex if dom f is a
convex set, and

fl0x+(1—0)y) < 0f(x)+(1—0)f(y)
for all x,y € dom f and 0 <0 < 1.

This inequality is easier to interpret with a picture. The left-hand
side of the inequality above is simply the function f evaluated along
a line segment between x and y. The right-hand side represents a
straight line segment between f(x) and f(y) as we move along this
line segment, which for a convex function must lie above f.
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We say that f is strictly convex if dom f is convex and

fllx+ (1 —-0)y) < 0f(x)+(1—-0)f(y)

forall x #y € dom f and 0 < 6 < 1.

Note also that we say that a function is f is concave if — f is convex,
and similarly for strictly concave functions. We are mostly interested
in convex functions, but this is only because we are mostly restricting
our attention to minimization problems. We justified this because
any maximization problem can be converted to a minimization one
by multiplying the objective function by —1. Everything that we say

about minimizing convex functions also applies maximizing concave
ones.

We make a special note here that affine functions of the form
flx) = (x, a) +D,

are both convex and concave (but neither strictly convex nor strictly

concave). This is the only kind of function that has this property.
(Why?)

Note that in the definition above, the domain matters. For example,
flz) =2’

is convex if dom f =R, = [0, oo] but not if dom f = R.

It will also sometimes be useful to consider the extension of f from
dom f to all of RY, defined as

f(w):f(w), x € dom f, f(a:):—i—oo, x ¢ dom f.

If fis convex on dom f, then its extension is also convex on RY.
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The epigraph
A useful notion that we will encounter later in the course is that of

the epigraph of a function. The epigraph of a function f : RY — R
is the subset of RV™! created by filling in the space above f:

epif:{m c R¥ . 2 ¢ dom f, f(a;)gt}.

[t is not hard to show that f is convex if and only if epi f is a convex
set. This connection should help to illustrate how even though the
definitions of a convex set and convex function might initially appear
quite different, they actually follow quite naturally from each other.

Examples of convex functions

Here are some standard examples for functions on R:
o f(x)=a?1is (strictly) convex.

o affine functions f(x) = ax+ b are both convex and concave for
a,b e R.

e exponentials f(x) = e* are convex for all a € R.
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e powers x“ are:
— convex on R, for a > 1,
— concave for 0 < a < 1,

— convex for av < 0.

|z|* is convex on all of R for a > 1.

logarithms: log x is concave on R, | :={z € R:x > 0}.

the entropy function —x log x is concave on R,

Here are some standard examples for functions on RY:

e affine functions f(x) = (x, a)+0b are both convex and concave
on all of RY,

e any valid norm f(x) = ||z|| is convex on all of RY.

o if fi(x) and fo(x) are both convex, then the sum fi(x)+ fo(x)
is also convex.

A useful tool for showing that a function f : RY — R is convex is
the fact that f is convex if and only if the function g, : R — R,

g(t) = flx+tv), domg={t : x+tvedomf}

is convex for every & € dom f, v € RY,

Example:
Let f(X) = —logdet X with dom f = SV, , where 8%, denotes the

4
set of symmetric and (strictly) positive definite matrices. For any

X € S8V, , we know that

X =UAU",
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for some diagonal, positive A, so we can define
X2 =UA"UT, and X V2 =UA?UT.
Now consider any symmetric matrix V' and t such that X +tV €
SV
gv(t) = —logdet(X +tV)
= —logdet(X"*I+tX PV X 1) X2
— —logdet X —logdet(I+tX V2V X 12

N
= —logdet X — Zlog(l + oit),

n=1

where the o; are the eigenvalues of X 2V X V2. The function
—log(1 4 o;t) is convex, so the above is a sum of convex functions,
which is convex.

Operations that preserve convexity

There are a number of useful operations that we can perform on a
convex function while preserving convexity. Some examples include:

e Positive weighted sum: A positive weighted sum of con-
vex functions is also convex, i.e., if fi,..., f,, are convex and
Wi, ..., w, >0, then wy fi + ...+ w,,f, is also convex.

e Composition with an affine function: If f : RY — R
is convex, then g : R”? — R defined by

g(x) = f(Az + b),

where A € RV*P and b € RY, is convex.
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e Composition with scalar functions: Consider the func-
tion f(x) = h(g(x)), where g : R — Rand h: R — R.

— fisconvexif gis convex and A is convex and non-decreasing.
Example: e/®) is convex if ¢ is convex.

— f is convex if ¢ is concave and h is convex and non-
increasing.

Example: ——

9(x)
e Max of convex functions: If f; and f; are convex, then
f(x) = max (fi(x), fo(x)) is convex.

is convex if ¢ is concave and positive.

First-order conditions for convexity

We say that f is differentiable if dom f is an open set (all of R,
for example), and the gradient

Vi) =

| Jxn

exists for each & € dom f. The gradient of a function is a core
concept in optimization and as such we review a little bit of what it
means at the end of these notes.

The following characterization of convexity is an incredibly useful
fact, and if we never had to worry about functions that were not
differentiable, we might actually just take this as the definition of a
convex function.
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If f is differentiable, then it is convex if and only if

fly) > fl&)+Vf(x) (y— =) (1)
for all ¢,y € dom f.

A

This means that the linear approximation

g(y) = f(x) + Vf(z)'(y — z),
is a global underestimator of f(y).

It is easy to show that f convex, differentiable = (1). Since f is
convex,

fleat+tly—=) < (1-t)f(x)+tfly), 0<t<1,

and so
o) 2 s+ LB M=)~ f@)

Taking the limit as ¢ — 0 on the right yields (1).

V0 <t <1.
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It is also true that (1) = f convex. To see this, choose arbitrary
x,y and set zg = (1 — 0)x + Oy; then (1) tells us

flw) = f(zg) + Vf(2o) (w — 2p).

Applying this at w = y and multiplying by 6, then applying it at
w = & and multiplying by (1 — ) yields

0f(y) > 0f(z9) + 60V f(29) (y — 2o),
(1=0)f(x) > (1—0)f(z5) + (1 =)V f(z9) (x — 20).

Adding these inequalities together establishes the result.

Second-order conditions for convexity

We say that f : RY — R is twice differentiable if dom f is an open
set, and the NV x N Hessian matrix

[ f(@) Pf(x) . Pf(@)]
Ox? 0x10x9 0x10T N
Vif(z)=| : . :
Pfl®) O f(x)
_8.13]\78561 890%] ]

exists for every & € dom f.

If f is twice differentiable, then it is convex if and only if
Vif(x) =0 (ie. V2f(x) e SY).

for all & € dom f.
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Note that for a one-dimensional function f : R — R, the above con-
dition just reduces to f”(x) > 0. You can prove the one-dimensional
version relatively easy (although we will not do so here) using the
first-order characterization of convexity described above and the def-
inition of the second derivative. You can then prove the general case
by considering the function g(t) = f(a + tv). To see how, note that
if f is convex and twice differentiable, then so is g. Using the chain
rule, we have

Jg'(t) =v'Vf(x + tv)v.

Since g is convex, the one-dimensional result above tells us that
g"(0) > 0, and hence v*V?f(x)v > 0. Since this has to hold for

any v, this means that V2f(x) = 0. The proof that V2f(x) = 0
implies convexity follows a similar strategy.

In addition, it is strictly convex if an only if

Vif(x) =0 (ie. V2f(z) € S),).

Standard examples (from | D

Quadratic functionals:

1
flx) = éwTP%‘JquﬂUJrT,

where P is symmetric, has
Vflx)=Px+q, Vf(x)=P,

so f(a) is convex iff P > 0.

Least-squares:

flz) = | Az — b|;,
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where A is an arbitrary M x N matrix, has
Vf(x)=24"(Az —b), V’f(x)=2A"A,
and is convex for any A.

Quadratic-over-linear:

In R?, if
flx) = 37%/1'2,
then
2%/ ) 2 2 —mm
Vi) = 2] vie -S| B
2 [
= x—% _—3’}1] [332 —561} ,

and so f is convex on R X [0, 00] (27 € R, x5 > 0).

Strong convexity and smoothness

We say that a function f is strongly convex if there is a y > 0
such that "
flx) — §Hng IS convex. (2)

We call p the strong convexity parameter and will sometimes say
that f is p-strongly convex. In a sense, what we are saying is that
f is so convex that we can subtract off a quadratic function and still
preserve convexity.

If f is differentiable, there is another interpretation of strong convex-
ity. We have seen that an equivalent definition of regular convexity
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is that the linear approximation formed using the gradient at a point
x is a global underestimator of the function — see (1) and the pic-

ture below. If f obeys (2), then we can form a quadratic global
underestimator as

fy) = f@) + Vi@ y—2)+5ly =l
Here is a picture

A

f(y)

9() = f(@) +VI@) (v —2) + Sy — o3

4
7
4
Z
s
/ ,
7 —_—
, y T
,
s
,
e
7

We will show that (2) implies (3) in a future homework.

If f is twice differentiable, there is yet another interpretation of strong
convexity. If f obeys (2) then we know that the Hessian of f(x) —
Ellz||3 does not have any negative eigenvalues, i.e.

v (1(a) - Blel) =o.
Thus (since V2(||x||5) = 2I),

V2 f(x) — ul = 0,
Y
Vif(x) = pl.

39

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 12:41, October 19, 2021



This is just a fancy way of saying that the smallest eigenvalue of the
Hessian V2f () is uniformly bounded below by p for all .

In addition to convexity, there is one more type of structure that we
consider for functions f : RY — R. We say that differentiable f has
a Lipschitz gradient if there is a L such that

IVf(x) = Vil < Lijx —yl,, foral x,y. (4

This means that the gradient V f(x) does not change radically as
we change . Functions f that obey (4) are also referred to as L-
smooth. This definition applies whether or not the function f is
CONVeX.

Whether or not f is convex, if it is L-smooth, it there is a natural

quadtratic overestimator. Around any point @, we have the upper
bound

fy) < f@)+ Vi@ -2+ ly—zl3 )

Here is a picture
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We will show that (4) implies (5) in a future homework.

If f is twice differentiable, then there is another way to interpret
L-smoothness. If f obeys (4), then we have a uniform upper bound
on the largest eigenvalue of the Hessian at every point:

V2f(x) < LI, forall x. (6)

This makes intuitive sense, as (4) tells us that the first derivative
cannot change too quickly, so there must be some kind of bound on
the second derivative. We will establish that (4) implies (6) (again,
regardless of whether f is convex) in a future homework.
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Review: The gradient

First, recall that a function f : R — R is differentiable if its deriva-
tive, defined as

o fla+8) = f(@)
) =t S

0—0

exists for all x € dom f. To extend this notion to functions of
multiple variables, we must first extend our notion of a derivative.
For a function f : RY — R that is defined on N-dimensional vectors,
recall that the partial derivative with respect to x,, is

of() . flw+de,) — fx)

axn 0—0 )

Y

th «

where e, is the n"™ “standard basis element”, i.e., the vector of all

zeros with a single 1 in the n'® entry.

)

The gradient of a function f : RY — R is the vector of partial
derivatives given by:

V@)= |

Similar to the scalar case, we say that f is differentiable if the gradient
exists for each & € dom f.

We will use the term gradient in two subtly different ways. Sometimes
we use V f () to describe a vector-valued function or a vector field,
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i.c., a function that takes an arbitrary @ € RY and produces another
vector. When referring to this vector-valued function, we sometimes
use the words gradient map, but sometimes we will overload the
term “gradient”; we will use the notation V f(x) to refer to the
vector given by the gradient map evaluated at a particular point
x. So sometimes when we say “gradient” we mean a vector-valued
function, and sometimes we mean a single vector, and in both cases
we use the notation V f(x). Which one will usually be obvious by
the context.'

Note that in some cases we will use the notation V, f(2) to indicate
that we are taking the gradient with respect to . This can be helpful
when f is a function of more variables than just @, but most of the
time this is not necessary so we will typically use the simpler V f(x).

Here we adopt the convention that the gradient is a column vector.
This is the most common choice and is most convenient in this class,
but some texts will instead treat the gradient as a row vector. The
reason for this is to align with the standard convention for the Ja-
cobian.” Thus, it is always worth double-checking what notation is
being used when consulting outside resources.

'This is just like in the scalar case, where the notation f(z) can sometimes
refer to the function f and sometimes the function evaluated at x.

2The Jacobian of a vector-valued function f : RY — RM is the M x N
matrix of partial derivatives with respect to each dimension in the range.
In this course we will mostly be concerned with functions mapping to a
single dimension, in which case the Jacobian would be the 1 x N matrix
V1f(x), i.e., the gradient but treated as a row vector. Directly defining
the gradient as a row vector instead of a column vector is thus more
convenient in some contexts.
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Interpretation of the gradient

The gradient is one of the most fundamental concepts of this course.
We can interpret the gradient in many ways. One way to think of
the gradient when evaluated at a particular point @ is that it defines
a linear mapping from RY to R. Specifically, given a u € RY, we
can use V f(x) to define a mapping of w to R by simply taking the
inner product between the two vectors:

(u, Vf(z)).
What does this mapping tell us? It computes the directional
derivative of f in the direction of u, i.c.,

(o, V fw))) = ETOU @) g

—0

This tells us how fast f is changing at & when we move in the
direction of u.

This fundamental fact is a direct consequence of Taylor’s theorem (see
the Technical Details section below). Specifically, let f : RY — R be
any differentiable function. Then for any w € RY, we can write

fx+u) = f(x)+ (u, Vf(x)) + h(u)|ul,,
where h(u) : RY — R is some function satisfying h(u) — 0 as
u — 0.

If we substitute du in place of w above and rearrange, we obtain the
identity

f(x+ 0u) — f(x) — h(ou)|[dul),

(. V() = -
_ e+ o) — f(z)
- DR TE hswlull.
44

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 12:41, October 19, 2021



Note that this holds for any 6 > 0. Since h(du) — 0 as § — 0, we
can arrive at (7) by simply taking the limit as § — 0.

A related way to think of V f(a) is as a vector that is pointing in the
direction of steepest ascent, i.e., the direction in which f increases
the fastest when starting at . To justify this, note that we just
observed that we can interpret (u, V f(x)) as measuring how quickly
f increases when we move in the direction of w. How can we find
the direction w that maximizes this quantity? You may recall that
the Cauchy-Schwarz inequality tells us that

[{u, V(@) < [V f(@)lllul,

and that this holds with equality when w is co-linear with V f(a),
i.e., when u points in the same direction as V f (). Specifically, this
implies that V f () is the direction of steepest ascent, and —V f(x)
is the direction of steepest descent.

More broadly, this characterizes the entire sets of ascent/descent di-
rections. Suppose that f : RY — R is differentiable at . If u € RY
is a vector obeying (u, V f(x)) < 0, then we say that u is a descent
direction from @, as we can find a ¢t > 0 small enough so that

flx +tu) < f(x).

Similarly, if (w, Vf(x)) > 0, then we say that w is an ascent
direction from @, as again for £ > 0 small enough,

flx +tu) > f(x).

It should hopefully not be a huge stretch of the imagination to
see that being able to compute the direction of steepest ascent (or
steepest descent) will be useful in the context of finding a maxi-
mum /minimum of a function.
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Technical Details: Taylor's Theorem

You might recall the mean-value theorem from your first calculus
class. If f : R — R is a differentiable function on the interval
la, x], then there is a point inside this interval where the derivative
of f matches the line drawn between f(a) and f(z). More precisely,
there exists a z € |a, z| such that

o= L= 1)
a
Here is a picture:
F(2) = f(l’:z = i(a)
| | |
a z x

We can re-arrange the expression above to say that there is some z
between a and x such that

fl@) = fla)+ f(2)(z — a).

The mean-value theorem extends to derivatives of higher order; in
this case it is known as Taylor’s theorem. For example, suppose
that f is twice differentiable on [a, x], and that the first derivative f’
is continuous. Then there exists a z between a and x such that

F@) = fla) + fl@)a—a)+ T @ a2
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In general, if f is k41 times differentiable, and the first £ derivatives
are continuous, then there is a point z between a and x such that

FE)
k!

where py..(x) polynomial formed from the first k£ terms of the Taylor
series expansion around a:

k+1

f(@) = pro(z) + (. —a)™,

f‘//(a)
2

Pra(z) = fla)+ f(a)(x—a)+ (x—a)+--+

These results give us a way to quantify the accuracy of the Taylor ap-
proximation around a point. For example, if f is twice differentiable
with f’ continuous, then

flx) = fla) + fa)(z — a) + (z)(x — a),
for a function hi(x) goes to zero as x goes to a:

r—a

In fact, you do not even need two derivatives for this to be true. If
f has a single derivative, then we can find such an h;. When f has
two derivatives, then we have an explicit form for A;:

B f”(zx)
2

where z, is the point returned by the (generalization of) the mean
value theorem for a given x.

hy(x)

($ o CL),

In general, if f has k derivatives, then there exists an hi(x) with
lim, 4 hy(x) = 0 such that

f(@) = pra(@) + hi(z)(z — @),
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All of the results above extend to functions of multiple variables. For
example, if f(x) : RY — R is differentiable, then around any point
a

)

f(x) = fla) +(x —a,Vf(a) + hz)]x - al

where hi(x) — 0 as @ approaches a from any direction. If f(x) is
twice differentiable and the first derivative is continuous, then there
exists z on the line between a and x such that

f(@) = fla) + (@ —a,Vf(a)) + (= — )" Vf(2)(x — a)

We will use these two particular multidimensional results in this
course, referring to them generically as “Taylor’s theorem”.
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II. Unconstrained Optimization
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Unconstrained minimization of
convex functions

We will start our discussion about solving convex optimization pro-
grams by considering the unconstrained case. Our template problem
1s
minimize f(ax 1

ninize f(x), ()
where f is convex. While we state this problem as a search over all
of R, almost everything we say here can be applied to minimized a
convex function over an open set'.

In these notes, we discuss two fundamental results. First, we will
show that when f is convex, all local minimizers of (1) must also be
global minimizers. Second, under the conditions that f(a) is convex
and differentiable, we will show that @* is a minimizer of (1) if and
only if the derivative is equal to zero:

x” is a global minimizer < Vf(x*) = 0.

Finally, we will touch briefly on conditions for the existence and
uniqueness of solutions to (1) when f is convex, strictly convex, and
strongly convex.

Throughout this section of the notes, we will assume that f is differ-
entiable. Similar statements to the gradient condition above are also
true for non-differentiable (but still convex) f; we will discuss these
in detail at the end of this chapter.

ntuition: Open sets don’t have boundaries, closed sets do. The entire
point of the study of constrained optimization, which we will get to next,
comes down to treating the fact that the solution can (and probably is)
on the boundary of your constraint set.

1
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Local minima are also global minima

The most important property of convex functions from an optimiza-
tion perspective is that any local minimum is also a global minimum,
or more formally:

Let f(x) be a convex function on RY, and suppose that x* is a
local minimizer of f in that there exists an € > 0 such that

f(x*) < f(x) forall || —a*|, <e.

Then @* is also a global minimizer: f(x*) < f(x) for all x € RY.

To prove this, suppose that &* is a local minimum. We want to show
that f(x*) < f(a') for any &’. We already have that f(x*) < f(a')
if || — x*||» < ¢, so all we need to do is show that this also holds
for &’ with ||’ — a*||» > €. Note that from convexity, we have

fl0x'+ (1= 0)x") < Of(2') + (1 —0)f ()

for any 6 € [0, 1]. In particular, the above holds for 8 = €/||x’ — x|,
(which is less than 1 since ||’ — a*||s > €). For this choice of 6 we
have

10"+ (1 — 0)x* — x*||; = 0|’ — ||, =€,

thus fa’ + (1 — #)x* lives in the neighborhood where x* is a local
minimum, and hence

fl@*) < f(0a + (1 — O)a”).
Combining this with the inequality above we have

fla’) < 0f(a) + (1—0)f(x").

2
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Rearranging this gives us 0 f (x*) < 6 f(x'), or simply f(x*) < f(a),
which is exactly what we wanted to prove.

Note that for functions f that are not convex, any number of things
are possible. It might be the case that there is only one local mini-
mum and that it corresponds to the global minimum. We are typi-
cally not so lucky, though. There may be many local minima, some
of which may be very far from actually minimizing f.

We close this section by re-emphasizing that the entire discussion
above would stay the same if we replaced minimize,cpy f(a) with
minimize,y, f () for any open set U C RY.

Optimality conditions for differentiable functions

We have just shown that if we want to find a global minimum of
a convex function, it is sufficient to find any local minimum. This
raises the question: How do we know when we have found a minimum
of a function (local or global)? Here we provide an answer to this
question in the case where f is differentiable.

Let f be convex and differentiable on RY. Then z* solves

minimize f(x)

if and only if V f(x*) = 0.

To prove this, we first assume that x* is a local minimum of f and
show that this implies that V f(x*) = 0. This follows almost imme-
diately. If «* is a local minimum of f, then this means that every

3
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direction must be an ascent direction, i.e., (d,V f(x)) > 0 for all
d € RY. However, the only way we can make (d, V f(x*)) > 0 for
all d is if V f(x*) = 0. Thus, for differentiable f

x” is a (local or global) minimizer =V f(x*)=0.
Note that this fact does not actually require f to be convex.

Now we will show that for convex f we also have that V f(x*) = 0
implies that f is a minimizer. Recall our first-order characterization
of convexity

fl@” +u) = f(x") + (u, V f(z)),
for all choices of w € RY. This now makes it clear that for convex f

Vfx*)=0 = x"isa (global) minimizer.

This fact will lie at the heart of the algorithms for unconstrained
convex optimization that we will begin discussing in the next set of
notes — if we can find an @ that makes the gradient vanish, then we
have solved the problem.

Existence and uniqueness

We close this set of notes with some discussion about when solutions
to the unconstrained minimization problem (1) exist and are unique.

To begin, it is important to realize that it is not always the case that
a convex function will actually have a minimizer. That is, there may
be sometimes be no * such that f(x*) < f(x) for all x € RY. For

4
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example, f(x) = e * does not have a minimizer for x € R, even
though it is convex (and differentiable). A more dramatic example
is taking f to be affine in RY, f(x) = a'x + b. It is clear that
although this function is convex, it is unbounded below on all of R¥,
and so does not have a minimizer.

We will cover some basis existence and uniqueness results for three
different types of functions: convex, strictly convex, and strongly
convex.

Convex

We begin with a simple fact that I might ask you to prove on the
homework next week. Suppose that f(ax) is convex and is well-
defined? on all of RY, that is | f(x)| < oo for all € RY. Then f(x)
is continuous on RY. This result is actually true for general open
sets: if f(a) is convex on U, then f(x) is continuous at every point

inU.

As a direct result of this continuity, we know that f(x) has a mini-
mizer over any compact subset of RY. Recall again the Weierstrass
extreme value theorem: if f(x) is a continuous function on a com-
pact set K C RY, then it attains its minimum (and maximum) value
in at least one point. That is,

minimize f(x)

has a minimizer on K — there exists a & € K such that f(a*) <
f(x) for all x € K.

’Note that we are not asking that f is bounded, simply that it does not
“jump” to oo anywhere.

D
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Here we are interested in the unconstrained setting, and we have
already seen examples of convex f which do not have a minimizer
in this setting. There is, however, a class of functions for which we
can guarantee a global minimizer in the unconstrained setting. If the
sublevel sets of f,

S(f.8)={zeR" : f(z)<b}

are compact (again, this means closed and bounded), then there will
be at least one global minimizer. This should be easy to see — just
choose 8 such that S(f, £) is non-empty, then

e S
has a minimizer (by the extreme value theorem), and this also clearly
corresponds to a minimizer of f over RY. If f is continuous (which
all convex functions with dom f = R are), then having compact
sublevel sets is the same as being coercive: for every sequence {x;.} C
RY with ||z.]|s — oo, we have f(x;) — oo as well. (I will let you
prove that at home.)

To summarize:

If f(x) is convex and has compact sublevel sets, then it has at
least one minimizer on R,

Strictly convex

In general, there can be multiple minimizers for a convex function.
However, there are certainly lots of scenarios where there is only
one unique minimizer. One prominent example is when f is strictly
convex.

6
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Let f be strictly convex on RY. If f has a global minimizer, then
it 1s unique.

This is easy to argue by contradiction. Let &* be a global minimizer,
and suppose that there existed an &’ # x* with f(ax’) = f(x*). But
then there would be many @ which achieve smaller values, as for all
0<b<1,

f0x* + (1 —0)x') < 0f(x*) + (1 — 0) f()
= f@").

This would contradict the assertion that a* is a global minimizer,
and hence no such &’ can exist.

Note that it is not necessary for a minimizer of a strictly convex
function to exist. Our previous example of f(x) = e * for x € R
falls into this category.

Strongly convex

On the other hand, strongly convex functions always have unique
minimizers. Let’s start by considering special case of a unconstrained
quadratic program:

minimize f(x) = L P +q'z+r,
xzeRN 2
where P is a symmetric positive definite matrix. We know that in
this case, f has the same Hessian everywhere, V2 f(x) = P, and so
f is p-strongly convex, where p is the smallest eigenvalue of P. We
also know that f has a unique minimizer: the gradient is zero when

7
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Px* = —q, and since P is invertible, there is exactly one x* that
obeys this condition. We also know that the sublevel sets of such a
quadratic function are ellipsoids and hence are compact.

To extend to a general strongly convex f, recall that for any ax,
strongly convex functions obey

fl@) = flao) + V(@) (@ =) + Gllo—zlf(2)

4

qzz;)

That is, f can be lower bounded by a (strongly convex) quadratic
function g(a). We know that the sublevel sets of ¢(x) are compact,
and the inequality tells us that the sublevel sets of f will be subsets
of the corresponding sets for ¢:

S(f,B) € Slq, b).

As f is continuous, S(f, ) is closed, and the boundedness of S( f, 3)
follows from the boundedness of S(q, 5). Thus S(f,3) is compact
for all 8, and f(a) has at least one minimizer.

Let * be one such minimizer. It is now an easy argument to show
that * must be the unique minimizer. Since V f(x*) = 0, we can
use ¢y = ¥ in (2) to get

fl@) - fl@) = Sl —a'

Thus f(x) = f(x*) only when & = x*.

To summarize:

8
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If fis a strongly convex function on RY, then it has a unique
global minimizer.

9
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Algorithms for unconstrained minimization

One of the benefits of minimizing convex functions is that we can
often use very simple algorithms to find solutions. Specifically, we
want to solve

minimize f(x),
where f is convex. For now we will assume that f is also differen-
tiable.! We have just seen that, in this case, a necessary and sufficient
condition for &* to be a minimizer is that the gradient vanishes:

Vf(x*) =0.

Thus, we can equivalently think of the problem of minimizing f(x)
as finding an &* that V f(x*) = 0. As noted before, it is not a given
that such an x* exists, but for now we will assume that f does have
(at least one) minimizer.

Many general-purpose optimization algorithms are iterative, and have
the following basic form:

Iterative descent

Initialize: k = 0, &y = initial guess
while not converged do
calculate a direction to move d;
calculate a step size a > 0
Ty = T + qp dy
k=k+1
end while

"We will cover the case where f is not differentiable a little later in the
notes.

10
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The central challenge in designing a good algorithm mostly boils
down to computing the direction d;,. As a preview, here are some
choices that we will discuss:

1. Gradient descent: We take
dp,=—-Vf (*’%) :

This is the direction of “steepest descent” (where “steepest”
is defined relative to the Euclidean norm). Gradient descent
iterations are cheap, but many iterations may be required for
convergence.

2. Accelerated gradient descent: We can sometimes reduce
the number of iterations required by gradient descent by incor-
porating a momentum term. Specifically, we first compute

D, = XLy — L1

and then take

dp = =V f(xp)+ %pk

8%
or

d, = —V [ (x, + Bipy) + %pk'

The “heavy ball” method and conjugate gradient descent use
the former update rule; Nesterov’s method uses the latter. We
will see later that by incorporating this momentum term, we
can sometimes dramatically reduce the number of iterations
required for convergence.

3. Newton’s method: Gradient descent methods are based on
building linear approximations to the function at each iteration.
We can also build a quadratic model around @, then compute

11
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the exact minimizer of this quadratic by solving a system of
equations. This corresponds to taking

d, = — (V*f(z)))  Vf(xy),

that is, the inverse of the Hessian evaluated at x; applied to
the gradient evaluated at the same point. Newton iterations
tend to be expensive (as they require a system solve), but they
typically converge in far fewer iterations than gradient descent.

. Quasi-Newton methods: If the dimension IV of x is large,
Newton’s method is not computationally feasible. In this case
we can replace the Newton iteration with

d. = -Q, V[ (x)

where Q,, is an approximation or estimate of (V2f(w;)) .
Quasi-Newton methods may require more iterations than a
pure Newton approach, but can still be very effective.

Whichever direction we choose, it should be a descent direction,
i.e., d;, should satisfy

(di, V f (1)) < 0.

Since f is convex, it is always true that

f(e+ad) > f(x)+ald V),

and so to decrease the value of the function while moving in direction
d, it is necessary that the inner product above be negative.

12
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Line search methods

Given a starting point x; and a direction dj,, we still need to decide
on «y, i.e., how far to move. With x;, and d;, fixed, we can think of
the remaining problem as a one-dimensional optimization problem
where we would like to choose a to minimize (or at least reduce)

o) = f(x, + ady) .

Note that we don’t necessarily need to find the true minimum — we
aren’t even sure that we are moving in the right direction at this
point — but we would generally still like to make as much progress
as possible before calculating a new direction dj, ;. There are many
methods for doing this, here are three:

Fixed step size

We can just use a constant step size o, = «. This will work if
the step size is small enough, but usually this results in using more
iterations than necessary. This is actually a very commonly used
approach since if your problem is small enough, this may not matter.

Exact line search

Another approach is to solve the one-dimensional optimization pro-
gram

minimize ().
There are a variety of strategies you could take here (e.g., apply-
ing a bisection search or some similar one-dimensional optimization
strategy) to try to solve this problem. This is typically not worth
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the trouble. However, there are certain instances (e.g., least squares
and other unconstrained convex quadratic programs) when it can be
solved analytically, in which case it is generally a good idea.

Example: Minimizing a quadratic function Suppose we
wish to solve the optimization problem

|
minimize émTQZI; —x'b.
T

For example, this optimization problem arises in the context of solv-
ing least squares problems. Suppose that we have selected a step
direction dj. In this case

(o) = %(mk +ady) ' Q(x), + ady) — (), + ady)'b.

This is a quadratic function of «, and thus we can compute the
optimal step size by finding the a such that ¢'(ar) = 0. By expanding
out the quadratic term, it is easy to show that

¢'(a) = ad, Qd; + d, Qx;, — d.b.
Setting this equal to zero and solving for « yields the step size

_dy(b—Quxy)
A — T .
d, Qd,

Backtracking

Exact line search is generally not worth the trouble, but the problem
with a fixed step size is that we cannot guarantee convergence of « is
too large, but when « is too small we may not make much progress on

14
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each iteration. A popular strategy is to do a rudimentary search for
an « that gives us sufficient progress as measured by the inequality

flxy) — f(@xp + ady) > —cia(dy,, V f (1)),

where ¢; € (0,1). This is known as the Armijo condition. For a
satisfying the inequality we have that the reduction in f is propor-
tional to both the step length « and the directional derivative in the
direction dj,.

Note that we can equivalently write this condition as
¢(a) < h(a) = ¢(0) + crad'(0).
Recall that from convexity, we also have that
¢(a) = gla) == ¢(0) + ad'(0).

Since ¢; < 1, we always have ¢(a) < h(a) for sufficiently small .
An example is illustrated below:

allowable «
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We still haven’t said anything about how to actually use the Armijo
condition to pick a. Within the set of allowable a satisfying the
condition, the (guaranteed) reduction in f is proportional to a, so
we would generally like to select o to be large.

This inspires the following very simple backtracking algorithm:
start with a step size of @ = &, and then decrease by a factor of p
until the Armijo condition is satisfied.

Backtracking line search
Input: @y, d, @ >0, ¢; € (0,1), and p € (0,1).
Initialize: a = @
while ¢(a) > ¢(0) + c;a¢'(0) do
a = pa

end while

The backtracking line search tends to be cheap, and works very well
in practice. A common choice for & is & = 1, but this can vary
somewhat depending on the algorithm. The choice of ¢; can range
from extremely small (107, encouraging larger steps) to relatively
large (0.3, encouraging smaller steps), and typical values of p range
from 0.1, (corresponding to a relatively coarse search) to 0.8 (corre-
sponding to a finer search).

Wolfe conditions

The Armijo condition above guarantees that the selected step size
provides some progress in terms of reducing f. A potential drawback,

16
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as can be seen in the figure, is that the Armijo condition does not rule
out extremely small steps. To address this, it is sometimes helpful
to impose an additional requirement on the step size:

(dp, Vf(z), + ardy)) > co{dy, V fxy)),

where ¢ € (0,1). This condition is easier to interpret if we again
recall that both sides of this inequality correspond to a directional
derivative (in the direction of d},), and so this condition is equivalent

to
¢'(a) = ¢/ (0).

In words, this condition tells us to select a step size such that the slope
of ¢ has increased by a certain factor compared to the initial slope
¢'(0). For convex functions this translates to a minimum allowable
step size, as illustrated below:

A

desired
slope

allowable «
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This condition together with the Armijo condition are collectively
called the Wolfe conditions:

¢(ar) < ¢(0) + c1a¢'(0)
¢'(@r) > e2¢'(0),

where 0 < ¢; < ¢y < 1.

In gradient descent (as well as other methods we will see soon, such
as accelerated gradient descent and Newton’s method), we can often
dispense with the second of these conditions — the standard back-
tracking search already biases us away from making the step size
much smaller than is required by the Armijo condition. However,
in some cases (such as quasi-Newton methods) it will be important
to explicitly enforce the second condition. Fortunately, the standard
backtracking search can be easily modified to handle this by simply
introducing an additional step at each iteration to check if the condi-
tion fails, in which case we must increase a to some value between
the last two iterates.

18
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Convergence of gradient descent

Here we will prove convergence guarantees for gradient descent,
where we find a minimizer® of

minitnize f(x)

using our generic iterative algorithm choosing the direction to move
as

resulting in the update rule

Tp1 =X — V[ (x).

Our goal is to establish the convergence rate of gradient descent. This
can be measured in many different ways. One way is to establish

f(xr) — f(x*) < some function that decreases to 0 as k — oo
= g(k)

This established convergence of the function values to the minimum.
With a result like this in hand, you can ask

How many iterations do we need to be within € of a solution?
and the answer is

k > g '(e) iterations will suffice.

Tn this section, we will always assume that a minimizer exists.

19
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For example, if we establish

then we know that

k202 5 fle)- e <

€

Note that the g(k) we derive will in general be monotonically de-
creasing and hence invertible.

[f we know that there is a unique solution &*, we might also bound

|z, — || < some function that decreases to 0 as k — oo.

The bounds we develop will depend on the structural properties of
the function f. In the mathematical optimization literature, there
are results for all different kinds of structure on f. In this set of
notes, we will consider two cases: convex differentiable f that

1. have an L-Lipschitz gradient map, i.e.

V() =V iyl < Lz -yl foralezy;

2. have an L-Lipschitz gradient and in addition are p-strongly
convex, 1.e.

y) = f@)+(y -2, V(@) + lly—al} forallz,y.

We will see that the additional structure added in the second case
makes a dramatic difference in convergence rate.

20
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Convergence of gradient descent: f smooth

As we have discussed before, having an L-Lipschitz gradient is akin
to the function being smooth: if the derivative changes in a controlled
manner as we move from point to point, the function itself will be
very well-behaved.

On the homework, you showed that

IVf(x) =V iy)lz < Lilz -yl (1)
means that we have the pointwise quadratic upper bound
L
fly) < @)+ {y — 2, V@) + Sy — x| (2)

This provides some intuition for what kind of structure the Lipschitz
gradient condition imposes on f. Recall that for any convex function,

we have
fly) = fl@)+(y — =z, V().

So if f is convex, then at any point & we can bound f from below by a
linear approximation. If in addition, if f has a Lipschitz gradient, (2)
we can also bound it from above using a quadratic approximation.
We will often refer to functions that obey (1) as L-smooth.

Now, let’s consider running gradient descent on such a function with
a fixed step size’ a;, = 1/L. Recall that the central gradient
descent iteration is just

1
Lpr1 = L — —Vf(iﬂk;)-
L
>This requires that you know L, which may not be possible in practice. In
fact, if a < 1/L you will still get convergence, it will simply be slower.
Moreover, it is not too hard to extend this approach to get a similar
guarantee when using a backtracking line search.
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From our assumption that f is L-smooth, we know that f satis-
fies (2), and thus plugging in y = @, 1, we obtain

2

Fl@) < f@) + (~ 7 V@), V@) + 5 |7Vt
= Jl@) ~ IV @ + 5V (@)
= flwe) — 5 IV f @) 3)

Note that (3) shows that f(xy,1) < f(=x;) as long as we are not
already at the solution, so we are at least guaranteed to make some
progress at each iteration. In fact, it says a bit more, giving us

a guarantee regarding how much progress we are making, namely
that

fla) — flain) = oIV f@)l

so that if the gradient is large we are guaranteed to make a large
amount of progress.

In the Technical Details section at the end of these notes, we show
that by combining this result with the definition of convexity and
doing some clever manipulations, we can get a guarantee of the form

L

fla) = f(@) < llwo - @'l

Thus, for L-smooth functions, we can guarantee that the error is
O(1/k) after k iterations. Another way to put this is to say that we
can guarantee accuracy

flxr) — flx") < e

22
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as long as
k> ollwo — *Hz
T 5.
=2 2

Note that if € is very small, this says we can expect to need a very
large number of iterations.

Convergence of gradient descent: smooth and strongly
convex

We will now show that the convergence rate is much faster if f is
strongly convex in addition to being smooth. Recall that for a u-
strongly convex function, we have

fy) = fa) + - Vi@)+ Sy —alh @
for all x, y.

We will use the same fixed step size a;, = 1/ L, and begin our analysis
in the same way as before, in which we derived the intermediate result
(3) that the L-smoothness of f implies

1
f(@ri1) < fl@n) = o7V (@05
We can now use strong convexity to obtain a lower bound on ||V f()][3.

We can obtain a simpler lower bound for f(y) by determining the
smallest value that the right-hand side of (4) could ever take over
all possible choices of y. To do this, we simply minimize this lower
bound by taking the gradient with respect to y and setting it equal
to zero:

Vi(x)+uy—x) =0,
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From this we obtain that the lower bound in (4) will be minimized

by
Yy—x= —in(m).

Plugging this into (4) yields
1 1
fy) = f(@) = —|IVf(@); + IV (@)]]3
,Li H
= f(x) - @HVf(w)H%-
In particular, this applies when y = a*, which after some rearranging

yields

IVf(@)ll; = 20 (f(z) — fx")). (PL)
This is a famous and useful result, often referred to as the Polyak-
Lojasiewicz inequality.

Combining the PL inequality with (3) we obtain
flana) = f@) < fl@) = fl@) = = (fla) - fla))
- (1-2) (tew) - 1)
That is, the gap between the current value of the objective function
and the optimal value is cut down by a factor of 1 — u/L < 1 at

each iteration. (Note that (2) and (4) imply that L > p.)

This is an example of linear convergence; it is easy to apply the
above iteratively to show that

Fla) — fla) < (1—ﬁ) (flxo) - f=). ()
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If we use €y = f(xg) — f(x*) to denote the initial error, this means
that we can guarantee that

flx) — flx") < e

for

log(€/ep)
= log(1 — p/L)

> £1og <@)
7! €

where the second inequality uses the fast that —log(1 — «) > « for
all 0 < a < 1.

Let’s step back for a moment, and compare

1 (0
— versus log | —].
€ €

What are these quantities when € = 10727 What about 107%7? This
is all to say that the performance guarantees for gradient descent are
dramatically better when f is strictly convex than when it is not.

We can also use (5) to characterize the convergence of the iterates
&, to the unique solution &*. Applying (4) with & = x* and y = x;,
yields (after noting V f(x*) = 0)

flan) = fl@") = Sllze — 2,

while applying (2) with & = * and y = x, yields

L
flxo) — f(z") < §H$0 — x*|);.
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Combining these with (5) yields

. L( p\ .
o =o'l < 5 (1= %) Iz =2l

so . — ax* at a linear rate as well. I will note that a more careful
analysis (which we won’t go into here) can also remove the factor of
L/ in front, yielding

Mm%
o~ < (1-1) flz -2l

Finally, we also note that the PL inequality above also provides some
guidance in terms of setting a stopping criterion. Specifically, if we
declare convergence when ||V f(x)|ls < € then the PL inequality
allows us to conclude that

1 2
flxy) — f(x") < ﬂHVf(a:k)Hg < o

This provides a principled way of declaring convergence.
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Technical Details: L-smooth convergence

Here we complete the convergence analysis for gradient descent on
L-smooth functions that is summarized above. Specifically, recall
that above in (3) we showed that if f is L-smooth then

f@en) < fla) — 57 IV ()2
Moreover, by the convexity of f,

flay) < f@") + (@ — 2", V f(2)),

where x* is a minimizer of f, and so we have

Flan) < fla) + {m — o, V(@) — oV fa) 3

Substituting V f(xy) = L(xy — @py1) then yields

L
f(®r) = f(@") < L{xy — ", ), — Tpy) — gHin e ()

We can re-write this in a slightly more convenient way using the fact
that
la — b[f; = [|lall; — 2(a, b) + [|b]|;

and thus
2(a, b) — [|b]l; = [lallz — lla — b]|5.
Setting @ = @, — * and b = x; — x; and applying this to (6),
we obtain the bound
L * *
2 e~ 2~ e — 272)

f(warl) - f(m*) <
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This result bounds how far away f (@) is from the optimal f(x*) in
terms (primarily) of the error in the previous iteration: ||a; — a*||3.
We can use this result to bound f(xyy1) — f(x*) in terms of the
initial error ||@y — x*||? by a clever argument.

Specifically, this bound holds not only for iteration k, but for all
iterations 7 = 1, ..., k, so we can write down k inequalities and then
sum them up to obtain

k

[k
Z flxi) = flz") < 5 (Z |z — |5 — || — :L’*H§> :

1=1

The right-hand side of this inequality is what is called a telescopic
sum: each successive term in the sum cancels out part of the previous
term. Once you write this out, all the terms cancel except for two
(one component from the ¢ = 1 term and one from the ¢ = k term)
giving us:

k

> flm) — flxh) <

1=1

(llwo = 2l = llzw — 2[J2)

~ no|

< gHiBo — x5

Since, as noted above, f(x;) is monotonically decreasing in 4, we also
have that

=1
and thus I
Fla) — f(@) < oo — [,

which is exactly what we wanted to show.
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Accelerated first-order methods

In the last lecture we provided convergence guarantees for gradient
descent under two different assumptions. Under the stronger assump-
tion that f was both L-smooth and strongly convex with parameter
1, we showed that convergence to a tolerance of € was possible in
O(ﬁlog(l /€)) iterations. Under the weaker assumption where we

only assume that f is L-smooth, we were able to show that O(L/e)
iterations would be sufficient.

In this lecture we show that there are small changes we can make
to gradient descent that can dramatically improve its performance,
both in theory (resulting in improvements on the bounds above)
and in practice. We will talk about two of these here: the heavy ball
method and Nesterov’s “optimal algorithm.” Both of these strategies
incorporate the idea of momentum, although in subtly different ways.

Momentum

One way to interpret gradient descent is as a discretization to the
gradient flow differential equation

Z/(t) = —V f(x(t))

x(0) = x.

(1)

The solution to (1) is a curve that tracks the direction of steep-
est descent directly to the minimizer, where it arrives at a fixed
point (where V f(x) = 0). To see how gradient descent arises as a
discretization of (1), suppose we approximate the derivative with a
forward difference

_x(t+h)—=(1)

ZB/(t) ~ h )
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for some small h. So if we think of ;. and x; as closely spaced
time points, we can interpret

é(wl-ﬁrl —x;) = =V f(x),

as a discrete approximation to gradient flow. Re-arranging the equa-
tion above yields the gradient descent iteration &y, = &, —a'V f(x}).

The problem is once we perform this discretization, the path tends
to oscillate. One way to get a more regular path is to consider an
alternative differential equation that also has a fixed point where
V f(x) = 0 but also incorporates a second-order term:

ma’(t) + a'(t) = =V f(x(t)). (2)

From a physical perspective, this is a model for a particle with mass
m moving in a potential field with friction. This results in trajectories
that develop momentum (a heavy ball will move down a hill faster
than a light one in the presence of friction). In the case where m = 0
we recover (1), but in general the inclusion of the mass term above
will result in a more accelerated trajectory towards the solution.

We can discretize the dynamics as before by setting

Tit1 — 2T + Tj Ty — Tj—
z'(t) ~ 2 PR () e 2T
h hy
If we plug these into (2) and rearrange we obtain an update rule of

the form

X1 = Tr + Br(Tr — 1) — iV f (), (3)
where 8 = hy/hoym and o = hy/m. This is the core iteration for the
heavy ball method, introduced by Polyak in 1964 | ]. The

x;, — x;,_, term above adds a little bit of the last step x;, — ;4
direction into the new step direction x;.; — @) — this method is also
referred to as gradient descent with momentum.
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Convergence of the heavy ball method

In the previous lecture we showed that if f(ax) is L-smooth and
strongly convex, then we can obtain a bound of the form

f@rn) — flx") < (1 - l)k (f(o) — f(2)),

K

where Kk = L/p is the “condition number.” From this we showed
that we can guarantee

*

")

(
(

fley) = fla*) _ )
flxo) = flxr) —
provided that

k> klog(1/e).

In the Technical Details at the end of these notes we also provide
an alternative argument for the convergence of gradient descent that
begins by showing that

* l{_l : *
fow @l < (57) oo = 7]

Using a similar argument as before, we can use this to show that

2 — 2],

g —x*|[s ~

provided that
k> rlog(1/e).

(Note that
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where the inequality comes from the fact that k > 1.)

The heavy ball method significantly improves on this result in terms
of its dependence on k.

Specifically, under the same assumptions as before (L-smoothness
and strong convexity), in the Technical Details section we show (for
the quadratic case) that for the heavy ball method with

. — 4 and (3, = <M>2
SENV/RE C\VL+ i

we can achieve

2 — 2],

<e when k2 vk log(1/e).
[0 — ||

The difference with gradient descent can be significant. When x =
107, we are asking for & 100log(1/€) iterations for gradient descent,
as compared with ~ 10log(1/¢) from the heavy ball method.

Conjugate gradients

If you are familiar with the method of conjugate gradients (CG),
some of this may feel vaguely familiar. If you have never heard of CG,
[ highly recommend reading through the tutorial “An introduction to
the conjugate gradient method without the agonizing pain” | ).

The CG method was developed for minimizing quadratic functions
of the form f(x) = j&"Qx —x"b. While it is normally presented in
quite a different fashion, it ultimately boils down to being a variant of
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the heavy ball method that is particularly well-suited to minimizing
quadratic functions. To see this connection, note that the core CG
iteration can be expressed' as

di, = =V f(x;) + Brdy

Tpi1 = T + apdy,

where we start with dy = —V f(xy). In CG, the §; are set as

5 IVs@I?
IV f(@r-)l3
If f(x) is a quadratic function this choice ensures that at each itera-
tion dj, is conjugate to dy, . ..,d;_;. We won’t worry about saying

more about this beyond the fact that this is a good idea if f(x)
15 quadratic. Once (, is fixed, ay, can then be chosen using a line
search. Again, if f(x) is quadratic, there is a simple closed form
solution for this (which we have previously derived).

While CG is parameterized differently than the heavy ball method
as described in (3), they are fundamentally the same. To see this
note that we can also write

1 = T + oy (—V f(xr) + Brdy_1)
L — L
= Ly — Okaf(mk) + Ckkﬁk—l
A1
This is precisely the same iteration as (3), but with a slightly different
way of parameterizing the weight being applied to the momentum
term.

You will typically see this algorithm described specifically for the quadratic
case, in which case V f(x) = Qx — b and these calculations are carefully
broken up to re-use as many calculations as possible and avoid any un-
necessary matrix-vector multiplies, so it may initially look quite different.
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If you are trying to minimize a quadratic function, CG is the way
to go. The convergence guarantees you get for CG when minimizing
a quadratic function are just as good (but not actually better than)
what you have for the heavy ball method, but you don’t need to
know anything like Lipschitz or strong convexity parameters (which
would correspond to the maximum and minimum eigenvalues of Q)
in order to choose the a4 and f;.

However, if you are trying to minimize anything else CG is not
necessarily a good choice. The choices for «, and 3, are highly tuned
to the quadratic setting and can yield unstable results in general.

Nesterov’s “optimal”’ method

In the case where f is strictly convex, you can come up with examples
that show that the convergence rate of the heavy ball method can’t
be improved in general. For non-strictly convex f, the story is more
complicated.

Recall that we also have a convergence result for gradient descent
in the case where we only assume L-smoothness. In particular, last
time we showed that for a fixed step size « = 1/L,

* L *
flaw) = (@) < o o — I5-
Thus, to reduce the error by a factor of € requires
.
— 2e

1terations.

In 1983, Yuri Nesterov proposed a slight variation on the heavy ball
method that can improve on this theory, and often works better in
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practice | ].% Specifically, recall the heavy ball method, which
can be represented via the iteration:

Dy, = Bk (wkz - wk—l)
LTy = T + Py — Oszf(in),

where we start with p, = 0. Nesterov’s method makes a subtle, but
significant, change to this iteration:

D, = B (iL’k; - ka;—1) (4)
Ty = T + P — iV f(xr + Dy)-

Notice that this is the same as heavy ball except that there is also a
momentum term snside the gradient expression. With this iteration,
we will show that (for a suitable choice of ay, and S},

fla) — fla) S sl —

meaning that we can reduce the error by a factor of € in

oz L

\/E?
iterations. When € ~ 107, this is much, much better than 1/e.
Nesterov’s method is called “optimal” because it is impossible to beat

the 1/k? rate using only function and gradient evaluations. There
are careful demonstrations of this in the literature (e.g., in | ).

Note that in practice, oy, can be chosen using a standard line search,
and a good choice of 8 (both in practice, and as we will show below,

*Note that this method remained to a large extent unknown in the wider
community until his 2004 publication (in English) of | ].
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in theory) turns out to be

k—1
b= 15 5)

This tells us that we should initially not provide much weight to the
momentum term, which makes intuitive sense as the initial gradients
may not be pushing us in the right direction, but as we proceed we
should have increased confidence that we are headed in the right
direction and increase how much weight we place on the momentum
term.

Significantly, note that in setting (5, we do not need to know any-
thing about the function we are minimizing (such as strong convexity
parameters). This represents an important advantage compared to
the heavy ball method described above.

Convergence analysis of Nesterov’s method

Analyzing the convergence of Nesterov’'s method under the assump-
tion of L-smoothness is a little more involved than for gradient de-
scent, but the overall approach is the same and contains many of the
same elements, so we will start by recalling the main building blocks
that we used in analyzing gradient descent.

Consequences of convexity and L-smoothness
First, we recall some basic facts that hold for any @,y € dom f.
Since f is convex we have

fly) = fl@)+(y—=z, Vfx)). (6)
Since f is L-smooth we have
fly) < fla) +ly— 2. Vi@)+ Sy —elp (7
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As a consequence of (7) (by setting y = @ — +V f()), we have that
for any @,

(o -2 < piay - L2 ©)

Combining this with the upper bound on f(a) that you can obtain
by rearranging (6), we obtain

Fo= YN < fw) + (o -, 9 st - LD )

L 2L

As we will see below, this inequality is the foundation of our analysis
of both gradient descent and Nesterov’'s method. By plugging in
different choices for y (such as x; or *) we can obtain both lower
bounds on how much progress we make when we take a gradient
step as well as upper bounds on how far away we are from a global
optimum.

Convergence of gradient descent
Recall that in our analysis for gradient we assume a fixed step size
a = 1/L, resulting in an update rule of

. V()
Lp41 — L — 7
Thus, setting @ = x;, and y = x* in (9) implies that

L
f(@rn) < f(@) + L), — ", T — 1) — 5”«’1% — x5

From this, if we define 6, = f(x,) — f(x*) and do some algebraic
manipulation (see the previous notes) we get a bound of the form

L

Ops1 < ) (lcr — 2|5 — || eers — 7]]3) -
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This yields the telescopic sum

k—1 L k—1
Y i < ) (Z i — 2"l — (|21 — fH%)
1=0 1=0

L

=L (- a3~ — 2 )
L

< 5”35‘0 — x5

The proof for gradient descent concludes by noting that

Convergence of Nesterov’s method

We will follow a similar argument to analyze Nesterov’s method. We
will again take o, = 1/L, but we will see that the analysis suggests
a natural choice for . With this choice of oy, the main iteration
from (4) is

1
Tpt1 = T + Pj, — va(mk + D).

It will be convenient to define

1
gr = —7V./(@i +py),
so that the main iteration becomes simply x,,1 = ®; + p. + g,

With this notation, by setting = x; + p, in (9) we obtain the
bound

L
fl@e) < 1) — Lae—p - 3.9 — Slaul3 (10
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If we set y = «* in (10) and again let §; denote f(x) — f(ax*) we
obtain

h

Opr1 < ) (2(x" — @ — P, g0) — 119:ll3) - (11)

In our analysis of gradient descent, we then tried to rearrange an
analogous bound to obtain a telescopic sum, but that doesn’t quite
work here. Instead we will need to combine (11) with another bound.
Noting that 6, — 641 = f(@x) — f(@ry1), we observe that setting
y = x; in (10) yields

L
0k — 01 > B (2(py, g) + HngS) : (12)

We now consider the inequality formed by adding together (11) and
1 — Ay times (12) (where A, is something we will choose later, but
satisfies A\, > 1, so that this multiplication switches the direction of
the inequality). The left-hand side of the sum will be

Ors1 + (1 = X)) (0 — Org1) = AkOpsr — (A — 1)0%.
The right-hand side of the sum will be

L *
5 @@ =@ = p+ (1= AP g1 — lglls + (1= M)llgully)
L *
D) (2(2" — @ — Mepp 91) — Nellgill5)
L
(2<5’5 — T}, — NP MeGr) — [[Argrll )
2>\k
L
(2" = @ — Nepylls — 12" — 2 — Moy — Megiill) 5
2>\k
where the last equality follows from the easily verified fact that
2(a,b) — ||bll5 = |la|3 — |la — bl|5. If we make the substitution
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U, = T + \;Py., then combining these yields the inequality

L
Ak = (A = Ap)dx < 5 lz" = willz = [l — wi — Megyll2) -
(13)

We will now show that if we choose A\, and ), appropriately, (13) will
yield a telescopic sum on both sides. This will occur on right-hand

side of (13) if
Uy + MGy = Upt1-

Noting that p, | = Bit1(®k+1 — 1) = B (Py, + g;.), We can write
Upy1 = Thy1 + Ner1DPi

=X, + P, + 9+ >\k+16/~c+1<pk + gk:)
=, + (1 + M1 8es1) (Pr + G1)-

Thus, to make u;,; equal to wy+ Arg, = Tr+ \e(p.+g,.) we simply
need to have

A — 1

Ak1

A =14+ N1 Bk1 = B = (14)

For f3;. satisfying (14), if we sum (13) from ¢ = 0 to k — 1 we thus
have

k—1
L
> Nbia — (A = X)d; < ) (1 = woll; — [J* — will3)
1=0
L *
< §HCB Ik
L *
L (15
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Next, one possible approach is to choose the A, so as to obtain a
telescopic sum on the left-hand side of the inequality as well. This is
the approach you will see most often in analyzing the convergence of
Nesterov’s method, but it is a little involved and leads to a recursive
formula for A\;, (and hence f3},) instead of a simple closed form expres-
sion. Instead we will choose a simpler A\, that yields essentially the
same bound.

Specifically, suppose that we set A\, = (k + 2)/2. First, note that
from (14) this yields

B2
Bk:—l—l: 2k+1 - )
k+3

2

which coincides with the rule for setting 5, given in (5). Next, note
that we can write

k-1 k-1
D NG — (AT = AN)G = (A= AT+ AL 10+ > (AL — AT+ N5
1=0 =1

Plugging in A\; = (i 4+ 2)/2 yields

k—1 2
k + 1
2 . —_— 2 —_— . [ — _— f— .
;:0: >\z 52—1—1 ()\z >‘z)52 ( ) 5k + 4 E 52

where the inequality follows since §; = f(x;)— f(x*) > 0. Combining
this lower bound with (15) yields

k4 1\° L. .
(F5) 82 Fla" ~ aulf
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or equivalently

2L
sl —olls,

flx) — f(z") < m

which is exactly the O(1/k?) convergence rate we wanted.
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Technical Details: Analysis of the heavy ball
method

We will analyze the heavy ball method for the special case of a
quadratic function:

. 1 T T
minimize flx) = 5% Qr+bx
We will assume that the eigenvalues of @ are in [u, L], and so f(x)
is both L-smooth and p-strongly convex.

Gradient descent revisited

We will warm up for our analysis on the heavy ball method by quickly
revisiting standard gradient descent. In the quadratic case, there is
an easy argument that

L—p
_ * < _ *
i =@l < e — 7,
diy I
= X — L
K+ 11k 2

where k = L/ is the condition number of Q.

Since 1 = xp — ,Vf(x,) and V f(x*) = 0, we have

leris — 27 l2 = llzx — iV (@) — 27

= [|®r — 2" — i (Vf(@r) = V()]
= [[(T— a@)(x) — )5

< T = @l - [ — 7|
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Since we have a bound on the eigenvalues of @, we know that the
maximum eigenvalue of the symmetric matrix I — Q) is no more
than

1T — Q] < max (|1 — agpl, |1 —aiL|).

If we take o = 2/(L + ), we obtain

L—p k-1

I-— < —
H akQ‘| — L—i—,u l‘i—i—l’

and so
Kk — 1

K+ 1

)Hm—me

Huﬂ—fms(

and by induction on k

* /{J_l : *
e 2l < (57 ) llzo - @7l

Heavy ball

For the heavy ball method, we have a similar analysis® that ends in
a better result. Recall the heavy ball iteration

i1 = T + Pe(Tr — 1) — 4V f(x),

We will derive a bound on how quickly [|@y1 — x*||* + ||x) — x*||3
goes to zero for fixed values of oy, = «a, £, = 8 which we will choose

*These notes are derived from | ].
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later. Rewriting the iteration above, we have
T — x| (x4 BTy — ) — | N Vf(xr) — Vf(x)
T, — x| x; — T 0

TV
Zk+1

T, — x*

(1+ B8)I — aQ —51] [wk—w]

I 0 T, 1 — T

T Zk

_ =+ Bler — ) — zc*] o [Q (wko_ w*)]

We have z, = Tz, and so
lzells < T (=0l

so we want to bound the spectral norm (largest singular value) of
T},

We are now analyzing the rate of convergence (to zero) of a linear
dynamical system. We know that the eigenvalues of T" are the
eigenvalues of T raised to the kth power. The only complicating
factor is that T" is not symmetric, and so the eigenvalues and singular
values are not the same thing. We reconcile this using the spectral
radius

p(T') = maximum magnitude of eigenvalues of T.

Two key results from linear algebra and dynamical systems are that
p(T) < ||T'|| and
p(T) = T [T

That is, for any given ¢ > 0, there exists an n such that

ITH|Y" < p(T) + 6,
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for all £ > n. Thus if we define the constant

B 1T
¢ = o<hon (p(T) + 0)F

we will have

ITH| < C(p(T) +6)" (16)

We are left with the task of bounding p(T') < 1 and choosing an
appropriate §. (Note that if T were symmetric, we would simply

have p(T') = | T|| and | T"|| = | T|[* = p(T)")

We can get a start on this by taking an eigenvalue decomposition of

the symmetric positive definite matrix @ = VAV, Since VV' =
I, we can write

(1+5)I-aQ —pl
| |

e e

0V I 0 0o VT~

Since [‘S ‘0/] is orthonormal, its application on the right of a matrix

and its transpose (inverse) on the left does not change the eigenvalues,
and so we can study the spectral radius of

T — [(1 + B)II —al —51] |

Notice that this a 2/N x 2N matrix divided into 4 blocks, each of which
is an N X N diagonal matrix. As such, there is also a permutation
matrix P that we can apply on both the rows and columns to make
this a block diagonal matrix (with 2 x 2 blocks along the diagonal):

' T Tll
PT'P = ! 0

Ty
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Since again the application of a matrix and its inverse on either side
does not change the eigenvalues, we can compute the spectral radius
of the matrix on the right. Since it is block diagonal, we know the
spectral radius is the maximum of the individual spectral radii of the
blocks. That is, we now have

p(T) = max p(T)

1<n<N

Since it is a 2 X 2 matrix, we can compute the eigenvalues of T,
exactly. We know that « is an eigenvalue of T", if det(T", —~I) = 0,
i.e. if

72_ (1+6—O‘)‘n)7+5207
which means the eigenvalues are

(71, 72) zé(1+ﬁa)\ni\/(1+ﬁmn)24ﬁ>.

If we choose 3 so that the eigenvalues are complex,

48 > (1+ 8 —a\,)’ (17)

then we have

(71, 72) :%<1+5—04>\nij\/45—(1+5—04>\n)2)a

and |71| = || = B, and hence p(T")) = 3. Using that fact that
p <A\, <L, we can ensure (17) holds when

8 = min(|1 — y/az, 1 - VaL]).
We can now choose « so that these two terms are equal,
4 VL-/n
(VL + /i) VL+ /i

= 1—\/ap=—(1-+al)

o =

47

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 16:39, September 20, 2021



and so

g Mg_(l_ LY
VL + /1 VE+1)
Taking d = 1/(y/k + 1) in (16) above and using 5% < 3, we have

1 k
lale < € (1=—=57) Ml

This means we are guaranteed that ||z;]|s < € when

k> (VE+1)log(Ce/e), € = |zl
2 Vklog(eo/e).
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Newton’s Method

Newton’s method is a classical technique for finding the root of a
general differentiable function f(x) : R — R. That is, we want to
find an & € R such that

f(z)=0.

As you probably learned in high school, one technique for doing this
is to start at some guess x(, and then follow the iteration

ST )

This update results from taking a simple linear approximation at
cach step:

Of course, there can be many roots, and which one we converge to
will depend on what we choose for xy. It is also very much possible
that the iterations do not converge for certain (or even almost all)
initial values x.
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However there is a classical convergence theory that says that once
we are close enough to a particular root xy, we will have

‘CUO — $k+1| < C- (550 - xk)27

"

€ 2
k+1 €L

where the constant C' depends on the ratio between the first and
second derivatives in the interval' around the root xy:

O o 113

ver 2| f'(x)]
The take-away here is that close to the solution, Newton’s methods
exhibits quadratic convergence: the error at the next iteration is
proportional to the square of the error at the last iteration. Since we
are concerned with €, small, €, < 1, this means that under the right
conditions, the error goes down in dramatic fashion from iteration to
iteration.

Notice that applying the technique requires that f is differentiable,
but the convergence guarantee depends on f be twice (continuously)
differentiable.

When f(x) is convex, twice differentiable, and has a minimizer, we
can find a minimizer by applying Newton’s method to the derivative.
We start at some initial guess xy, and then take

f' ()

Tpy1 = Tp — m (1)

IThere are various technical conditions that f must obey on Z for this
result to hold, including the second derivative being continuous and the
first derivative not being equal to zero. Also, the condition “close enough”
is characterized by looking at ratios of derivatives at the root and on Z.
The Wikipedia article on this is not bad: https://en.wikipedia.org/
wiki/Newton’s_method.
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Again, if f is three-times continuously differentiable, we converge to
the global minimizer quadratically with a constant that depends on

1)
C=5 S )

for an appropriate interval Z around the solution. Again, apply-
ing the method relies on us being able to compute first and second
derivatives of f, and the analysis relies on f being three-times differ-
entiable.

We can interpret the iteration (1) above in the following way:

1. At x, approximate f(z) using the Taylor expansion

F(o) = f@) + e — o)+ 5" () — )

2. Find the exact minimizer of this quadratic approximation. Tak-
ing the derivative of the expansion above and setting it equal
to zero yields the following optimality condition for x to be a

minimizer:
fi@e) - (@ = x) = = f ().
This is just a re-arrangement of the iteration (1).

3. Take 1.1 =7.

This last interpretation extends naturally to the case where f() is a
function of many variables, f : RY — R. We know that if f is convex
and twice differentiable, we have a minimizer * when V f(x*) = 0.
Newton’s method to find such a minimizer proceeds as above. We
start with an initial guess @y, and use the following iteration:
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1. Take a Taylor approximation around f(x;):
1
f(@) = f(zy) + (@ — 2, 9) + 5(5’3 —z;) H(z — x))
where

g =V f(x,) = N x 1 gradient vector at x;
H = V°f(x;) = N x N Hessian matrix at x.

2. Find the exact minimizer & to this approximation. This gives

us the problem
1

minimize g'(x — x;) + =(x — z;) H(x — ;).
xeRN 2

Since H € S8 (since we are assuming f is convex), we know
that the conditions for & being a minimizer” are

H(x —x;) = —g.

If H is invertible (i.e., H € Siv . ), then we have a unique
minimizer and
z=x,— H'g.

3. Take x;, ., = .

This procedure is often referred to as a pure Newton step, as it does
not involve the selection of a step size. In practice, however, it is
often beneficial to choose the step direction as

di, = — (V2 f(z) V(xy),

and then choose a step size a4, using a backtracking line search, and
then take
Tpp1 = Ty, + oudy,

as before.

?Take the gradient of this new expression and set it equal to O.
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Convergence of Newton’s Method

Suppose that f(a) is strongly convex,
pl X Vif(x) < LI, Va € RY,
and that its Hessian is Lipschitz,
IV*f(z) = Vil < Qllz — yll.

(The norm on the left-hand side above is the standard operator
norm.) We will show that the Newton algorithm coupled with an
exact line search’ provides a solution with precision e:

fxr) —p" <

provided that the number of iterations satisfies

k > Cy(f(xo) — p*) +log,logy(en/e),

where we can take the constants above to be C} = 2L*Q*/u’ and
€0 = 217 /Q?. Qualitatively, this says that Newton’s method takes a
constant number of iterations to converge to any reasonable precision
— we can bound log, log,(€y/€) < 6 (say) for ridiculously small values
of €.

To establish this result, we break the analysis into two stages. In
the first, the damped Newton stage, we are far from the solution (as
measured by ||V f(x)]|2), but we make constant progress towards
the answer. Specifically, we will show that in this stage,

flxr) = f(ea) = 1/Ch.

3These results are easily extended to backtracking line searches; we are just
using an exact line search to make the exposition easier. See | , Sec.
9.5.3] for the analysis with backtracking.
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This implies that when we are far from the solution, we reduce the
gap f(x) — p* by at least 1/C} at each iteration. It should be clear,
then, that the number of damped Newton steps is no greater than

C1 (f(xo) — p*).

We will then show that when ||V f(a;)]2 is small enough, the gap
closes dramatically at every iteration. We call this the quadratic
convergence stage, as we will be able to show that once the algorithm
enters this stage at iteration ¢, for all & > /£,

IVf(xy)]ls < Cy-2727,

where Cy = @Q/(2u?) is another constant.

Damped phase

We are in this stage when
IV f(@)ll2 > 17/ Q.
We take @1 = @) + Qexactdy, Where
dy = =V’ f(z) 'V f(z),
and Qe 18 the result of an exact line search®:

Qlexact = alg min f(wk + Oédk)
0<a<l

We define the current Newton decrement as

N = \/ V(@) T(V2f () V f (),

‘For convenience, we are not letting o be larger than 1, just as in a back-
tracking method.
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and note that \f = —V f(x;)'d,. Moreover, strong convexity im-
plies that the eigenvalues of (V2 f(x;)) " are at least 1/L and at
most 1/p, yielding the bounds

1 1
!!dk\@S;Ai and <[ Vf(@y)ll; < A,

which we will use below. From the L-smoothness of the gradient of
f, we know that for any ¢ we have

flan + 1d) < faa) + (e, VF ) + 5

Lt?

= f(@y) — tA; + THdng
Lt?

< flay) — tA, + ZAZ

Plugging in ¢t = u/L above yields

f(wk' + O‘exactdk) - f(wk) < f (wk + %dk) - f(wk)
Koo
< -
< 2£>\k
< — 5V @)l
1P
= 2022
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Quadratic convergence

When
IV i)l < 17/ Q,

we start to settle things very quickly. We will assume that in this
stage, we choose the step size to be o, = 1. In fact, you can show
that under very mild assumptions on the backtracking parameter
(¢ < 1/3, to be specific), backtracking will indeed not backtrack at
all and return o = 1 (see | , p. 490]).

We start by pointing out that by construction,
V2f($k)dk = =V f(xs),

and so by the fundamental theorem of calculus,
Vi(@i) = V(x,+dy) — V(e — Vf(x)ds
1
= [ V(e + )yt — 9 (),
0
1
0

Thus, we obtain
V5 (erle < [ 19+ tde) — V(e - el dt
< [ Qi at
)V ] S

< Q%HVf(wk)H%,
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where the second inequality follows from the Lipschitz assumption
on the Hessian and the last inequality follows from the fact that the
maximum eigenvalue of (V2 f(x;)) % is less than 1/u? Thus we have

vl < (smivi@l) < (3)

where the last inequality follows since ||V f(xy)|ls < p?/Q. That
is, at every iteration, we are squaring the error (which is less than
1/2). If we entered this stage at iteration ¢, this means

< ()

« 5 20 (1
fla) —p < IVl < —(_)

2]{75 2]67&

%nwwug < (%rww%nz)

Then using the strong convexity of f,

The right hand side above is less than € when

k— 0+ 1> log,logy(ep/€), € =2m?/L?,
so we spend no more than log, log, (€, /€) iterations in this phase.
Note that

e=10""¢ = log,log,(€/e) = 6.0539.
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Convergence criteria: the Newton decrement

We know that at the minimia of a smooth convex functional we will
have Vf(x) = 0. So a natural test for convergence is to measure
how far away V f(x) is from 0; that is, we say we are converged
when the norm of V f(x) is below some threshold (call it €):

stop when ||V f(z;)]| < e.

Which norm should we use?

The natural instinct here is to go with the standard Euclidean (/)
norm, stopping when

IV ()]s < e

and in fact, this quantity played a key role in our analysis above.
But there is something that is unsatisfying about using the Euclidean
norm, and this problem also extends to the way we approached the
analysis in the previous section. An interesting feature of Newton’s
method is that it is affine invariant; if we simply change the co-
ordinates, the iterates change accordingly. For example, let T' be
a N x N invertible matrix, and set f(x) = f(Tx). Suppose we
run Newton’s method to try to find a minima of f starting at a,
and computing iterates @i, @, .... Then we run Newton’s method
on f starting at T 'a, and compute iterates &;, T, .... This sec-
ond set of iterates will follow the same progression as the first under
transformation by T

., =T 'z, k=1,2,...

The problem, then, with the the Euclidean norm of the gradient is
that it is not affinely invariant:

IV f(@)ll: # [IVf(T2)], for general T
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(Apply the chain rule.)

A criteria that is affinely invariant is the Newton decrement:

Nx)=+/g"™H'g, g=Vf(z) H=Vf(x)

(Again, you can work this out with a little effort by applying the
chain rule.) These are various ways you can interpret this: one is as
size of the gradient in the norm induced by H

A@) = |V £ (@)l

Of course, the norm itself depends on the point . You can also
think of it as the directional derivative in the direction we are taking

a Newton step; it d = —(V?f(x)) 'V f(x), then
(d, V(@) = =A(@)".

At any rate, the convergence criteria for Newton’s method is usually
whether A\(x;) is below some threshold.
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Self-concordant functions

There is an alternative analysis of Newton’s method that is more
satisfying in that it gives an affinely invariant bound, and it does
not depend on the constants u, L, () that are usually unknown. The
analysis holds for functions that are self-concordant, a term that we
define below.

Definition. We say that a convex function of one variable f : R —
R is self-concordant if

1" (z)] < 2f"(x)3?, forall x € dom f.

We say that a convex function of multiple variables f : RY — R is
self-concordant if

g(t) = f(x +tv) is self-concordant for all & € dom f, v € R".

We should note that the constant 2 that appears in front of the f”(x)
above is somewhat arbitrary — if there is any uniform bound on the
ratio of |f”(x)| to f"(x)*?, then f can be made self-concordant
simply by re-scaling.

We mention a few important examples (see | , Chapter 9.6] for

many more).

e Since the third derivative of all linear and quadratic functionals
is zero, they are self-concordant.

o f(x)= —log(x) is self-concordant
e f(X)=—logdet X for X € S¥, is self-concordant

e Sclf-concordance is preserved under composition with an affine
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transformation, so for example

M
flx) = —Zlog(bm—aflw) on{x:a’ <b, m=1,... M}
m=1

is self-concordant. Functions of the above form will play a ma-
jor role when we talk about log-barrier methods for contrained
optimization.

Using a line of argumentation not too different than in the classical
analysis in the last section, we have the following result for the con-
vergence of Newton’s method (again, see | , Chapter 9] for the
details):

If f(x) : RY — R is self-concordant, then Newton iterations starting
from xy coupled with standard backtracking line search will have

flxy) —p"<e

when
k > Cey+log,logy(1/€), € = flxg) — p~.

The constant C' above depends only on the backtracking parameters.

You may more fully appreciate this result when we talk about log
barrier techniques a little later.

References
[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.
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Nonsmooth optimization

Most of the theory and algorithms that we have explored for convex
optimization have assumed that the functions involved are differen-
tiable — that is, smooth.

This is not always the case in interesting applications. In fact,
nonsmooth functions can arise quite naturally in applications. We
already have looked at optimization programs involving the hinge
loss max(a'x + b,0), the ¢; norm, the £, norm, and the nuclear
norm — none of these is differentiable. As another example, sup-
pose fi,..., fo are all perfectly smooth convex functions. Then the
pointwise maximum

flx) = max f,(»)

is in general not smooth.

) = (10 () = (=17 fi(t) = max (A1), fo()
t— t—

Fortunately, the theory for nonsmooth optimization is not too dif-
ferent than for smooth optimization. We really just need one new
concept: that of a subgradient.
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Subgradients

If you look back through the notes so far, you will see that the vast
majority of the time we use the gradient of a convex function, it is
in the context of the inequality

fly) = fle)+(y—= Vi), foralxyedonf

/

This is a very special property of convex functions, and it led to all
kinds of beautiful results.

When a convex f is not differentiable at a point @, we can more or
less reproduce the entire theory using subgradients. A subgradient
of f at @ is a vector g such that

fly) > flx)+{y —x,g), forally e dom f.

Unlike gradients for smooth functions, there can be more than one
subgradient of a nonsmooth function at a point. We call the collection
of subgradients the subdifferential at x:

of(x) =1{g : fly) > f(x)+(y —=,g), forally € dom f}.
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Example:

—1, x <0
fla)=lz], Of(x)=q[-11, z=0
1, x> 0.
black: f(x) = |z|
i | blue: f(0)+g(z—0) forafew g € 9f(0)

05r

0

-0.5

-1rF

15 . . . . . . .
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xr —

Facts for subdifferentials of convex functions:

1. If f is convex and differentiable at @, then the subdifferential
contains exactly one vector: the gradient,

Of(x) ={V[f(z)}.

2. If f is convex on dom f, then the subdifferential is non-empty
and bounded at all & in the interior of dom f.

For non-convex f, these two points do not hold in general. The
gradient at a point is not necessarily a subgradient:
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and there can also be points where neither the gradient nor subgra-
dient exist, e.g. f(z) = —+/|z| for z € R
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Example: The /; norm

Consider the function
f(x) = ||z

The ¢, norm is not differentiable at any x that has at least one coordi-
nate equal to zero. We will see that optimization problems involving
the ¢, norm very often have solutions that are sparse, meaning that
they have many zeros. This is a big problem — the nonsmoothness is
kicking in at exactly the points we are interested in.

What does the subdifferential d||x||; look like in such a case? To
see, recall that by definition, if a vector w € 0||x||;, at the point @,
then we must have

lylls = Nzl + (y — z,u) (1)

for all y € RY. To understand what this means in terms of x, it
is useful to introduce the notation I'(x) to denote the set of indexes
where @ is non-zero:

Nx)={n : x, # 0}.

Using this, we can re-write the right-hand side of (1) as

x|l + (y — x,u) Z\xn\+2un

nel’ n=1

Note that if
1 if x, >0,

tn = sign(z,) = {—1 iz, <0
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then u,x, = |z,|. Thus, if u, = sign(zx,) for all n € I', we have

Z |z, — upx, = Z lz,| — |x,| = 0.

nel’ nel’

Thus, if we set u,, = sign(x,,) for all n € I, then (1) reduces to

lylly = (y, w).

As long as |u,| < 1 for all n, then this will hold. Hence, if a vector
u satisfies

u, = sign(zx,) ifnerl,
lu,| <1 ifné¢l,

then w € J||x||;. It is not hard to show that for any w that violates
these conditions, we can construct a y such that (1) is violated, and
thus this is a complete description of all vectors in u € 0||x||;.
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Example: The ¢, norm

While the function '@ = ||«||3 is the prototypical differentiable
(Vf(x) = «), smooth, and strongly convex function (V2f(x) =1),
the function f(x) = ||x||2 is not as nice; it is not strongly convex,
and it is not differentiable at & = 0 (to appreciate this latter point,
consider that a 1D slice of the function s(t) = |[tv||y = |t]||v]]2 looks
like the absolute value function as function of t).

For & # 0, an easy calculation' shows that

xr

vaHQ — H«’ﬂHz

At & = 0, we know that u € 9||x||, if
lyll2 = (0]l + {y — 0, u) = (y,u) forall yeR". (2)

We can find w that meet these conditions using the Cauchy-Schwarz
inequality. Note that

(y,u) < [lyll2][u]l,

so (2) will hold when ||u|l; < 1. On the other hand, if ||ul||y > 1,
then for y = u, we have

(y,u) = [lylz > [lyll.
and (2) does not hold. Therefore

u : ||ullp <1}y, =0
aHa:Hz—{{i st

(]2

"Use the fact that £1/2% +a = z/V2? + a.
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General norms at £ =0

Norms in general are not differentiable at & = 0, again because they
look like an absolute value function along a line: s(t) = |[[tv|| =
|t] - [|Jv|| for any valid norm || - ||. We can generalize the result for the
¢ norm at & = 0 using the concept of a dual norm.

The dual norm || - ||, of a norm || - || is

|y« = max (x,y).

]| <1

Since sublevel sets of norms in RY are compact, we know that this
maximum is achieved, and it is an easy exercise to show that || - ||,
is a valid norm. You can also verify the following easy facts at home

e the dual of || - |5 is again || - ||,

e the dual of || - || 18 || - [|s

e the dual of || - [|o is || - |1
It is also a fact (for norms on RY) that the dual of || - ||, is the
original norm || - ||, i.e. ||x|/.. = ||x]|. We also have the generalized

Cauchy-Schwarz inequality

(gl < lzll -yl

We can use these facts with an argument similar to the ¢, case above
to compute the subdifferential of any norm at 0 as

0] = {u : [Jufl. < 1}.
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Properties of subdifferentials

Here are some properties of the subdifferential that we will state
without proof (but are easy to prove). Below, we assume that all
functions are well-defined on all of RY.

Summation: If f(x) = fi(x) + f(x), then

Of (x) = dfi(x) + dfa(x).

That is, the set of all subgradients (at @) of f is the set of vectors
that can be written as a sum of a vector from df;(x) plus a vector

from 0 fy(x).

Chain rule for affine transformations: If h(x) = f(Ax+b),
then
Oh(x) = A"0f(Ax + b).

That is, we compute the subgradients of f at the point Aa + b, then
map them through A",

where ['(x) = {m : f,.(x) = f(x)}, and conv takes the convex
hull:

P P
conv(X) = {Z ATy, Ty € XN, 2> O,Z)\p =1, VP}
p=1

p=1
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Exercise: Compute 0f(x) for f(x) = ||y — Ax||;.

Answer: Set I'(z) = {m : a},x = ym}, where a}, is the mth row of A. Then df(x) is the set of vectors that can be written

m
T ~
u = § sgn(a,, — ?/m)""m + E Bm@m

mgI'(x) mel (x)

as

for any By, with |Bm| < 1.
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Exercise: Compute 0f(z) for f(x) = max(z,0).

Answer:

Exercise: Compute 0f(x) for f(x) = max((z + 1), (x — 1)?).

Answer:

20c —1) x <O,
of(z) =41[-2,2], x=0,

2(x+1), x>0.
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Exercise: Compute df(x) for f(x) = ||Z||w-
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Optimality conditions for unconstrained optimization

With the right definition in place, it is very easy to re-derive the cen-
tral mathematical results in this course for general® convex functions.

Let f(x) be a general convex function. Then a* is a solution to
the unconstrained problem

minimize f(x)
xeRN

if and only if
0 cof(xr).

The proof of this statement is so easy you could do it in your sleep.
Suppose 0 € df(x*). Then

fly) = f(&") + {y — =", 0)
= flx

for all y € dom f. Thus x* is optimal. Likewise, if f(y) > f(x*)
for all y € dom f, then of course it must also be true that f(y) >
f(x*) + (y — x,0) for all y, and so 0 € 9 f (x*).

Example: The LASSO

Consider the £; regularized least-squares problem

o] 5
minitnize §||y — Ax|; + 7||z|;.

Meaning not necessarily differentiable.
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We can quickly translate the general result 0 € 0 f(a*) into a useful
set of optimality conditions. We need to compute the subdifferential

of f(x) = ||y — Ax||3 + 7||||;. The first term is smooth, so the

subdifferential just contains the gradient:
Of(x) = A" (Ax — y) + 70||z||.
As shown above 0||x||; is the set of all vectors w such that

u, = sign(z,) if z, #0,
u,| < 1 if 7, = 0.

Thus the optimality condition
0c A'(Az* — y) + 70||x*||1,
means that «* is optimal if and only if

a, (y— Az*) = rsigna’ if 2 # 0,
la(y — Az*)| <7 if 27 = 0.

where here a,, is the n'® column of A.

Note that this doesn’t quite give us a closed form expression for x*
(except when A is an orthonormal matrix), but it is useful both algo-
rithmically (for checking if a candidate @ is a solution) and theoreti-
cally (for understanding and analyzing the properties of the solution
to this optimization problem.)
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The subgradient method

The subgradient method is the non-smooth version of gradient de-
scent. The basic algorithm is straightforward, consisting of the iter-
ation

Ty = T — pdy, (3)

where d}, is any subgradient at @y, i.e., d;, € 0 f(x;). Of course, there
could be many choices for d, at every step, and the progress you make
at that iteration could very dramatically with this choice. Making
this determination, though, is often very difficult, and whether or
not it can even be done it very problem dependent. Thus the ana-
Iytical results for the subgradient method just assume we have any
subgradient at a particular step.

With the right choice of step sizes {ay}, some simple analysis (which
we will get to in a minute) shows that the subgradient method con-
verges. The convergence rate, though, is very slow. This is also
evidenced in most practical applications of this method: it can take
many iterations on even a medium-sized problem to arrive at a solu-
tion that is even close to optimal.

Here is what we know about this algorithm for solving the general
unconstrained program

minimize f(x). (4)

RN

We will look at one particular case here; for more detailed results
see | , Chapter 3]. Along with f being convex, we will assume
that it has at least one minimizer. The results also assume that f is

Lipschitz:
[f(x) = f(y)| < Lllz—yl..
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Note that here we are assuming that f is Lipschitz, not that f has
Lipschitz gradients (since the gradient does not even necessarily ex-
ist). A direct consequence of f being Lipschitz is that the norms of
the subgradients are bounded:

|d||; < L, foralld e df(x), foral xR, (5)

The results below used pre-determined step sizes. Thus the itera-
tion (3) does not necessarily decrease the functional f(x) at every
step. We will keep track of the best value we have up to the current
iteration with

Pest — min { f(x;), 0<i<k}.
We will let &* be any solution to (4) and set f* = f(x*).

Our analytical results stem from a careful look at what happens
during a single iteration. Note that

i — 2|l = @ — aud; — 7|3

= ||z, — x5 — 20 (x; — x*, di) + || di |3
<@ — 2|5 — 204(f(x:) — 1) + ;|| di]|5,

where the inequality follows from the definition of a subgradient:
[Pz fle) + (@ —w, di).
Rearranging the bound above we have
20; (f(@:) = ) < [l@s — 2[5 = [|@isn — 2[5 + o[ dil2,
and so of course

200 (f7 = f7) < Ml — 2|5 = Nl — @7[[2 + o] [ l2-
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Since fP*' is monotonically decreasing, at iteration k we have
200 (fi™ = f*) <z = 2"[; = i — 2"+ o[ dil]3,

for all + < k. To understand what has happened after k iterations,
we sum both sides of the expression above from i =0toi1 =k — 1.
Notice that the two error terms on the right hand side give us the
telescoping sum:

k-1
ZO (l: = 2*[l; = i = 27[13) = llo — "l = Il — 273
i
< [lmy — 2|3
and so
s _ o N =275 + ZZ 0 illdill5 (6)
B 25 0 QU

We can now specialize this result to general step-size strategies.

Fixed step size. Suppose that a;, = a > 0 for all k. Then (6)
becomes
best f* Hwo o w*”% Lza

2ko 2’

where we have also used the Lipschitz property (5). Note that in
this case, no matter how small we choose «, the subgradient
algorithm is not guaranteed to converge. This is, in fact,
standard in practice as well. The problem is that, unlike gradients for
smooth functions, the subgradients do not have to vanish as we ap-
proach the solution. Even at the solution, there can be subgradients
that are large.
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Fixed step length. A similar result holds if we always move the
same amount, taking

o = s/||d|ls-
This means that
Hwkﬂ — kaH2 = S.

Of course, with this strategy it is self-evident that it will never con-
verge, since we move some fixed amount at every step. We can bound
the suboptimality at step £ as

L||lxyg — x*||5 Ls

best * <
’ s 2ks 2

which is not necessarily worse than the fixed step size result. In fact,
notice that even though you are moving some fixed amount, you will
never move too far from an optimal point.

Decreasing step size. The results above suggest that we might
want to decrease the step size as k increases, so we can get rid of
this constant offset term. To make the terms in (6) work out, we let
ap — 0, but not too fast. Specifically, we choose a sequence {ay}
such that

i o

o
g ap =00, and —=—7— —0.
k=1 i=0 Vi

Looking at (6) above, we can see that under these conditions fPe* —
f*. Tt is an exercise (but a nontrivial one) to show that it is enough
to choose {a;} such that

ap — 0as k — oo, and Zozk:oo. (7)
k=1
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To get an idea of the tradeoffs involved here, suppose that a; =
a/(k+1). Then for large k, we have the approximations

k-1 k—1
Z a; ~ alogk, and Z o’ ~ Const = a*7° /6
i=0 i=0

that are good as upper and lower bounds to within constants. In this
case, the convergence result (6) becomes
2o — I3 al’

Const - 22
alogk MU gk

kbest . f* 5

So the convergence is extraordinarily slow — logarithmic in k.

You can get much better rates than this (but still not great) by
decreasing the stepsize more slowly. Consider now o = a/Vk + 1.
Then for large k

k—1

k-1
Zai ~ (a+1)Vk, and Z o ~ o’logk,
i=0 i=0

and so o 2100
I — =71 + Const - == 287

(o + DVE vk

This is something like O(1/v/k) convergence. This means that if we
want to guarantee fP*' — f* <'¢, we need k = O(1/¢€®) iterations.

kk:)est . f* 5

In | , Chapter 3], it is shown that there is no better rate of
convergence than O(1/+/k) that holds uniformly across all problems.

Example. Consider the “/; approximation problem”

minimize ||Ax — b|};.
xeRN
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We have already looked at the subdifferential of ||a||;. Specifically,
we showed that w is a subgradient of ||x||; at @ if it satisfies

u, = sign(x,) if z, # 0,
lu,| <1 if z,, = 0.

In the exercise above, we also derived the subdifferential for || Az — b||;.
We quickly re-derive it here using “guess and check”. First consider
a vector z that satisfies

Zm = sign(a, © —b,) ifa x — b, #0,
2| < 1 ifa'x —b, =0.

Now consider the vector u = ATz, Note that

u'(y—z)=z"Aly — =)
=2'(Ay—b+b— Ax)
=2'(Ay —b) — z'(Az — b)
=2z (Ay —b) — [[Az — b||,
< [[Ay = bl[; — || Az — b]],.

Rearranging this shows that w is a subgradient of || Ax — bl|;. Using
this we can construct a subgradient at each step @,

Below we illustrate the performance of this approach for a randomly
generated example with A € R0 and b € R For three
different sizes of fixed step length, s = 0.1,0.01,0.001, we make
quick progress at the beginning, but then saturate, just as the theory
predicts:
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(f(®r) = )/ f (S =)/ f
————— 10—

— 01 | ; — 01 |
— 0.01 | * — 0.01 ||

1 —0.001] 101&\ —0.001}]
107 ; 1

107050 40 60 8o 100 107" 1000 2000
0 1000 2000 3000

k k

Here is a run using two different decreasing step size strategies: oy, =

01/vk and ay = .01/k.
(Rt = )/ f*

‘—0.‘01/‘\/E
— 0.01/k ||

0 1000 2000 ) 3000 4000 5000
As you can see, even though the theoretical worst case bound makes

a stepsize of ~ 1/ V'k look better, in this particular case, a stepsize
~ 1/k actually performs better.
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Qualitatively, the takeaways for the subgradient method are:

L.

It is a natural extension of the gradient descent formulation

2. In general, it does not converge for fixed stepsizes.

3. If the stepsizes decrease, you can guarantee convergence.
4.
5

. Convergence rates in practice are also very slow, but depend a

Theoretical convergence rates are slow.

lot on the particular example.
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Proximal algorithms

The subgradient algorithm is one generalization of gradient descent.
It is simple, but the convergence is typically very slow (and it does
not even converge in general for a fixed step size).

One way to deal with this is to add a smooth reqularization term.
Specifically, it is easy to show that if &* is a minimizer of f(a), then
it is also the minimizer of

minimize f(x) + ||z — x*||3,
xeRN
where 0 > (0. While the resulting optimization problem is still nons-
mooth, it is now strongly convex, and we know that strongly convex
functions are generally much easier to minimize. The “only” chal-
lenge is that it requires us to already know the solution a&*, which
would seem to limit the practical applicability of this idea.

We can turn this into an actual algorithm by adopting an iterative ap-
proach. The proximal algorithm or proximal point method
uses the following iteration:

1

i = argnin ( f(a) + 5 |lo — @il ) ()
RN 873

As noted above, when f is convex, f(x) + 0||lx — z||3 is strictly
convex for all § > 0 and z € RY, so the mapping from x;, to x;,; is
well-defined. We will sometimes use the “prox operator” to denote
this mapping:

1
pros, () = argmin ( (@) + 5 —[}@ — 2[3) .
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It can be shown (and in fact we give a proof later in these notes)
that the iterations above do find a minimizer of convex f for an
appropriate choice of “step sizes” .

At this point, you would be forgiven for having doubts about what
we are really doing here. We have taken an optimization problem and
turned it into... a sequence of many optimization problems. How-
ever, these problems can sometimes be far easier to solve that the
original problem. One way to think about the additional ﬁ | — ||
term is as a regqularizer that makes each subproblem computation-
ally easier to solve, and whose influence naturally disappears as we
approach the solution, even for a fixed “step size” a;, = .

A very nice a detailed review of proximal algorithms can be found in

P14

Implicit gradient descent (“backward Euler”)

The proximal point method can also be interpreted as a variation
on gradient descent. To see this, let us return for a moment to the
differential equations for the “gradient flow” of f:

z'(t) = =V f(=(t), z(0)==z (2)
The equilibrium points for this system are the & such that V f(x) =
0, which are precisely the minimizers for f(x).

As we first discussed in the context of momentum-based methods,
we can interpret gradient descent as a first-order numerical method
for tracing the path from @, to a solution &*. This comes from dis-
cretizing the derivative on the right using a forward finite difference:

x(t+h)—x(t) -

; —V f(x(t)) for small h.
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Thus the gradient descent iterations
Ty = xp — hV f(x})

approximate the solution at equispaced times spaced h seconds apart
— the step size in gradient descent can be interpreted as the time
scale to which we are approximating the derivative. This is known
as the forward Euler method for discretizing (2).

But now suppose we used a backward difference to approximate the
derivative:

x(t) —x(t—h)
h

Now the iterates must obey

~ —V f(x(t)) forsmall h.

T = T — WV f(Th41).

This is an equally valid technique for discretizing (2) known as the
backward Euler method. However, computing the iterates is not as
straightforward — we can’t just compute the gradient at the current
point, we have to find the next point by finding an @;,; that obeys
the equation above.

This is exactly what the proximal operator does. If f is differentiable,
then

, 1
op1 = arguin ( f(2) + 5| — )
xRN o7
)
1
0=Vf(zp)+ a_(mkﬂ — ). (3)
k
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So the proximal point method can be interpreted as a backward Euler
discretization for gradient flow.

Note that we assumed the differentiability of f above purely for il-
lustration; we can compute the prox operator whether or not f has
a gradient.

Example: Least squares

Suppose we want to solve the standard least-squares problem

minimize ||y — Az|l,

When A has full column rank, we know that the solution is given
by Z)s = (A" A) A"y, However, we also know that when A" A is
not well-conditioned, this inverse can be unstable to compute, and

iterative descent methods (gradient descent and conjugate gradients)
can take many iterations to converge.

Consider the proximal point iteration (with fixed o, = «) for solving

this problem:

. 1 1
Toer — argmin (§||y ~ Azl + -z - wkuz) .

RN

Here we have the closed form solution

L1 = (ATA + 51)_1(ATy + 5a:k), 0=
—x, +(A"A+ ) A (y — Axy).

1
Qo

Now each step is equivalent to solving a least-squares problem, but
this problem can be made well-conditioned by choosing § (i.e., «)
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appropriately. The iterations above will converge to &, for any value
of a; as we decrease « (increase ¢§), the number of iterations to
get within a certain accuracy of &y increases, but the least-squares
problems involved are all very well conditioned. For « very small,
we are back at gradient descent (with step size «).

This is actually a well-known technique in numerical linear algebra
called iterative refinement.

Proximal gradient algorithms

Recall the core update equation for the proximal point method:

1
111 = pros, (o) = ang i f(2) + o — ).

xeRN 2a
Suppose that we did not wish to fully solve this problem at each iter-
ation. If f is differentiable, we could approximate this update by re-
placing f(ax) with its linear approximation f(x)+{(x—ax;, V f(x;)).
This would yield the update

e = ang win ( flae) + (@~ @1, V(@) + 5o - @il)

reRN

= arg min (IV f @)+ (@ — 0, T ) + 5o — il

reRN

1
= arg min (—HZL‘ — Ty + on(wk)Hg)

xRN 073

= Ly — Oéka<$k>

Thus, taking a linear approximation of f, the proximal method sim-
ply reduces to standard gradient descent. (Note that the first equality
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above comes from the fact that the presence/absence of f(x;) and
IV f(,)||5 does not affect what the minimizer is, as @, is fixed.)

Where this starts getting interesting is when we encounter optimiza-
tion problems where the objective function can be broken into the
sum two parts, 1.e.,

f(x) = g(x) + h(z),

where both g and h are convex, but g is smooth (differentiable) and h
is a non-smooth function for which there is a fast proximal operator.
Such optimization problems quite a bit more often than you might
expect.

The proximal gradient algorithm is the result of applying the
proximal point method to minimize the approximation of f where
we take a linear approximation to the smooth component g. Using
the same argument as above, this results in the update rule!

_ 1
v = arg min (glae) + (@ — o, Vlaw)) + hie) + 5 @ - )
k

reRN

, 1
— arg min (h(zc) + 2—”:13 — Iy + oWg(wk)H%)
xRN Qe

= ProxX,,; (r — axVg(xy)) .

This is also called forward-backward splitting, with the “forward”
referring to the gradient step, and the “backward” to the proximal
step. (The prox step is still making progress, just like the gradient
step; the forward and backward refer to the interpretations of gra-
dient descent and the proximal algorithm as forward and backward
Euler discretizations, respectively.)

'Again, the second line comes from removing g(x;) and adding a multiple
of |[Vg(x.)||3 and then completing the square.
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Example: The LASSO

Recall our friend the LASSO:
1

minimize =|ly — Ax|); + 7llx|;.
xRN 2

We take
1
o) = Sl — Azl s Vilz) = AT(Az —y),

and
hx) = 7l
The prox operator for the ¢; norm is:

. 1 9
prox,,(z) = arg min | 7||x||; + %Hw — z||;

zeRN
— TTa(z)7
where 17, is the soft-thresholding operator

Zi —TQ, Z; > TQ,
(Tra(2)); = 40, |zi| < Ta,
zi+Ta, z; < —Ta.

Hence, the gradient step requires an application of A and A*, and
the proximal step simply requires a soft-thresholding operation. The
iteration looks like

L1 = TTak (mk + Oék;AT(y — Amk)) .

This is also called the iterative soft thresholding algorithm, or ISTA.
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Here is a comparison” of a typical run for ISTA versus the subgradient
method. ISTA absolutely crushes the subgradient method.

0.50
|

0.20
|

0.10
|

f(@®r) — f

0.05
|

—— Subgradient method
—— Generalized gradient
T T T T T T

0 200 400 600 800 1000

0.02
|

# iterations

>This is taken from the lecture notes of Geoff Gordon and Ryan Tibshirani;
“generalized gradient” in the legend means ISTA.
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Convergence of the proximal gradient method

The convergence analysis of the proximal gradient method is ex-
tremely similar to what we did for gradient descent. In fact, gradi-
ent descent is a special case of the proximal gradient method (when
h(x) = 0), and our analysis will recover the same result. We will
assume that g is L-smooth, but we will make no assumptions on
h aside from convexity. As before, we will use a fixed “step size”,
ap = 1/L for all k. We will * denote any minimizer of f.

The general structure of the argument is as follows:

1. Using the L-smoothness of g as well as the first-order charac-
terization of convexity, we can establish that

f(@r) < f(2) + (@ — 2,dy) - —||dk||2 (4)

for all z € RY where dy := L(x;, — ®j11).

2. From (4) we can conclude, by setting z = @, that

flan) < fla) = 5zl < fl),

and thus f(x;) is non-increasing at every step.

3. From (4) we can also conclude, by setting z = a*, that

f(@i1) < f(x") + (z — 2", dy) — _HdkHQ

By exactly the same argument as we have seen in the analysis
of both gradient descent and Nesterov’s method, we can show
that this bound is equivalent to
. L
f(@ra) — fl&") < )

([lzy — 2] 15

9 — Hwkﬂ — & Hz) :
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4. This yields a telescopic sum, and hence by an identical argu-

ment to that used in analyzing gradient descent, we arrive at
the bound

* L *
fl@y) = fla) < —llzo — 5.
2k
Thus, the proximal gradient algorithm exhibits the same convergence
rate as gradient descent: O(1/k). This is remarkable when consid-
ering that it holds for any h. This result is in fact a kind of “master

result” for the convergence rate of many different algorithms:
e gradient descent (take h(x) = 0),
e the proximal point method (take g(x) = 0),
e the proximal gradient method.

The work above gives a unified analysis for all three of these, showing
that they all exhibit O(1/k) convergence.

Note that the only novelty in the analysis above compared to that of
gradient descent is the derivation of (4). To establish this inequality,
we first note that

f(@ri1) = g(@pi1) + h(Xgs1)
< g(as) = 7 Volwe) + 5ol + i), (5)

where the inequality follows directly from the definition of L-smoothness.
We now use two facts to get an upper bound on this expression. First,
note that from the first-order characterization of convexity,

9(2) 2 gl@) + (2 — @, Vg(xi)). (6)
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Second, since

1
L1 = ProXy (wk — Evg(wk))

x 2

2
)
2

0e 8h(azk+1) — dk + Vg(a:k) = dk — Vg(:lzk) € 8h(wk+1)

L 1
= arg min (h(w) + — Ha: — Ty + ng(mk)

we know

Thus
h(z) > h(xpy) + (z — 1, dy — V(). (7)
We combine (6) and (7) back into (5) to obtain

1
L

#h(z) = (2= @t dinds — Vo(a) )

F(@n) < 9l2) + (s — 2 Vglaa)) — 7idk, Volan)) + ol

L
1 /L
= f(z) + <513/<; - Z,dk> + Z (ﬁ - 1) Hdng

1
< f(z)+ (xr — z,dy) — innga

which establishes (4).

94

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 16:04, October 4, 2021



Accelerated proximal gradient

We can accelerate the proximal gradient method in exactly the same
way we accelerated gradient descent — in fact, the Nesterov’s method
for gradient descent is simply a special case as that for the proximal
gradient algorithm. The accelerated iteration is

k-1
Pr= 37
T = ProX,,, (Tr + P — pVg(xr +py)) -

(wk - in—1)

Again, the computations here are in general no more involved than
for the non-accelerated version, but the number of iterations can
be significantly lower. We will not prove it here (see | | for an
analysis), but adding in the momentum term results in convergence
rate of O(1/k?) using a similar argument as before.

The numerical performance can also be dramatically better. Here are
typical runs® for the LASSO, which compares the standard proximal
gradient method (ISTA) to its accelerated version (FISTA):

0.200 0.500

0.020 0.050

=
8
NI
|
~
%

—— Subgradient method
—— Generalized gradient
— — Nesterov acceleration

0.002 0.005

T T T T T T
0 200 400 600 800 1000

# iterations

3Again, this example comes from Gordon and Tibshirani; as before “gener-
alized gradient” means ISTA, and “Nesterov acceleration” means FISTA.
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III. Constrained Convex Optimization
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Optimality conditions for constrained
optimization

When we are solving an unconstrained optimization problem, the
goal is clear: we want to find a point where the gradient vanishes.
All of the algorithms we looked at over the last few lectures were in
service of this condition. Once we add constraints, the optimality
conditions are more complicated, and involve relationships between
the gradient of the functional we are minimizing along with the gradi-

ents of the constraints — these are the so-called Karush-Kuhn-Tucker
(KKT) conditions.

We will build up to the KK'T conditions slowly. We will first derive a
general (and very easy to prove) geometric necessary and sufficient
condition for &* to be a minimizer of a constrained optimization
program. We will then show how this simple result immediately
yields the KKT conditions for certain kinds of constraints. In the
next set of notes, we will derive the KK'T conditions, show that they
are always sufficient, and discuss conditions under which they are
also necessary.

To keep things simpler, in our initial discussion of constrained opti-
mization, we will restrict our focus to smooth optimization problems.
As before, most of what we have to say can be extended to the non-
smooth case by simply replacing gradients with subgradients, but
we will assume that our objective function (and eventually, our con-
straints) are differentiable for the time being.

We start by considering the general constrained problem

minimize f(x)

where C is a closed, convex set, and f is again a convex function.
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We have the following fundamental result:

Let f be a differentiable convex function, and C be a closed convex
set. Then x* is a minimizer of

minimize f(x)

if and only if * € C and

<y _ m*v Vf<$*)> Z 0

for all y € C.

This result is geometrically intuitive; it is saying that every vector
from x* to another point y in C must make an obtuse angle with
—V f(a*). That is, there cannot be any descent directions from a*
that lead to another point in C. Here is a picture:
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To prove this, we first argue that (y —x*, V f(x*)) > 0 forally € C
implies that &* is optimal. Since f is convex, for any y € C

fly) = fla") +(y — =", Vf(x")),

and so

fy) = flx") = (y —=" Vf(x)) > 0

Since this holds for every y € C, * is a minimizer.

Now suppose that x* is a minimizer. If there were a y € C such
that (y — «*, Vf(x*)) < 0, then d = y — x* would be a descent
direction, and there would exist a 0 < ¢t < 1 such that

fla™ +tly — 7)) < fa).

Since C is convex and &*,y € C, we know &* + t(y — x*) € C. But
this contradicts the assertion that x* is a minimizer, and so no such
Yy can exist.

Examples

The abstract geometrical result in the previous section will eventually
lead us to the Karush-Kuhn-Tucker (KKT) conditions. But we will
build up to this by looking at what it tells us in several important
(and prevalent) cases.

We assume throughout this section that f is convex, differentiable,
and defined on all of RY.
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Linear constraints

Consider a convex optimization problem with linear’ constraints,

minimize f(x) subjectto Ax =b,
xeRN

where A is M x N and b € R™. At a solution x*, we have
<y _ w*7 Vf<$*>> Z 07

for all ¢y such that Ay = b. Since Aax* = b as well, this is equivalent
to

(h,Vf(x*)) >0, forall h e Null(A).
Since h € Null(A) & —h € Null(A), we must have

(h,Vf(z*)) =0, forall he Nul(A),

i.e. the gradient is orthogonal to the null space of A. This means
that it is in the row space,

Vf(x*) € Row(A) = Col(A"),
and so there is a v € RM such that

V(@) +ATv =0

"We really should be saying affine constraints, but “linear constraints” is
typical nomenclature for this type of problem.
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Summary:

x* Is a solution to

minimize f(x) subject to Az =b,
xeRN

if and only if
1. Ax* = b, and
2. there exists a v* € RM such that Vf(z*) + A'v* = 0.

/(@)

(level lines)

D
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Non-negativity constraints

Now consider the convex program

minimize f(x) subjectto a > 0.
xeRN

At a solution x*, we will have
(y —x*, Vf(x)) >0, foral yeR}. (1)
Since both 0 € RY and 22* € RY, this means

(", Vf(z")) =0, (2)

and so
(y, Vf(x*)) >0, forall yeRY,
meaning that the gradient has only non-negative values as well,
Vf(x*) > 0. (3)

The conditions (2) and (3) are sufficient as well, as together they
imply (1).
Note that condition (3) is the same as saying there exists a A* > 0

such that
V@) —A"=0.

We can also see that (2) and (3), along with the fact that * € RY,
mean that V f(x*) and «* can only be non-zero at different indices:

V@), >0= z,=0,
x, > 0= [Vf(x")],=0.

6
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Summary:

x* Is a solution to

minimize f(ax) subjectto x >0,
xeRN

if and only if

1. z© > 0,
and there exists a A* € RY such that

2. A" >0, and
3. \x,=0foralln=1,..., N, and
4. Vf(xr)— A" =0.

7

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 21:14, October 2, 2021



A single convex inequality constraint

Now consider the convex program

minimize f(x) subjectto g(x) <0,

RN

where ¢ is also a differentiable convex function. We will argue that
in this case, the optimality conditions for a*,

g(x*) <0, and (y—x*, Vf(z*)) >0, forally with g(y) <0,

are equivalent to one of these two conditions holding,
1. g(x*) < 0and Vf(x*) =0, or
2. g(x*) = 0 and the gradients of g and f are negatively aligned:

Vg(x*) = =AV f(x*), forsome A > 0.

Establishing this relies on the following geometric fact:?

Let w, v be vectors in RY. If no d exists such that
(d,u) <0, and (d,v) <0 simultaneously, (4)
then w and v are negatively aligned,
u = —M\v, forsome \> 0. (5)

The converse also holds, as if (5) is true, there is no way (4) can
be true.

>This is a special case of the famous Gordan Theorem.

8
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The argument for this is simple. The sets {x : (x,u) < 0} and
{x : (x,v) < 0} are open half spaces, and these half spaces are
disjoint if and only if (5) holds.

(@ (z,v) = 0}

Suppose that *, with g(x*) < 0, is a minimizer. We know that
Vg(x*) and V f(x*) must be negatively aligned, as otherwise our
geometric fact dictates that there is a d that is a descent direction
for both g and f, meaning there is a 0 < ¢ < 1 such that

fx*+td) < f(x*), and
gl +td) < g(x*) <0.

This would mean that there is a feasible point at which f is smaller
than it is at a*, directly contradicting the assertion that x* is a
minimizer. Thus no such d can exist.

Suppose now that there is an &* such that g(x*) = 0 and a A > 0
so that Vg(ax*) = —AV f(x*). Let x be any other feasible point;
g(x) < 0. Then, by the convexity of g,

glx-+0(x—x*) <0, forall0<6<1.

9
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Since the above is true for all 6 in this range, we know that  — x*
cannot be an ascent direction for g from x*. Thus

(x —x*, Vg(x¥)) <0.
Since Vg(x*) = —AV f(x*), we now know

(x —x*,Vf(xr)) > 0.
Then by the convexity of f,

flx) = f(a") + (x — =", V f(7))
> f(x),

and so x&* is a minimizer.

We can collect all of this into the following summary:

x* Is a solution to

minimize f(x) subjectto g(x) <0,

RN

if and only if

L g(x*) <0,
and there exists a A\* € R such that

2. A* >0, and
3. X g(x*) =0, and
4. Vf(x*) + XVg(x*) = 0.

10
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The Karush-Kuhn-Tucker (KKT) conditions

In this section, we will give a set of sufficient (and at most times nec-
essary) conditions for a &* to be the solution of a given convex opti-
mization problem. These are called the Karush-Kuhn-Tucker (KKT)
conditions, and they play a fundamental role in both the theory and
practice of convex optimization. We have derived these conditions
(and have shown that they we both necessary and sufficient) in some
special cases in the previous notes

We will start here by considering a general convex program with in-
equality constraints only. This is just to make the exposition easier
— after we have this established, we will show how to include equality
constraints (which must always be affine in convex programming). A
great source for the material in this section is | , Chap. 10].

Everywhere in this section, the functions f(x), gi(x),..., gu(x),
gm : RY — R, are convex and differentiable.

12
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KKT (inequality only)
The KKT conditions for the convex program

minimize f(ax) subjectto gi(x) <0
go(x) <0
gu(x) <0

inx e RY and A € RM are

gn(x) <0, m=1,..., M,
A >0,
Amgm(®) =0, m=1,..., M,
M
V@) +Y  AaVgm(z) =0,
m=1

We start by establishing that these are sufficient conditions for a

minimizer.

If the KKT conditions hold for * and some \* € RM . then o* is

a solution to the program (1).

Below, we denote the feasible set as

C={xzcR" : g,(x)<0, m=1,...,M}.

It should be clear that the convexity of the g,, implies the convexity'

'The g,, are convex functions, so their sublevel sets are convex sets, and C

13
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of C. The sufficiency proof simply relies on the convexity of C, the
convexity of f, and the concept of a descent/ascent direction (see the
previous notes).

Suppose x*, A* obey the KKT conditions. The first thing to note is
that if
)\1:)\2:”':>\M:O,

then (K4) implies that
Vf(x") =0,

and hence x* is a global min, as by the convexity of f,
fl@) = f&) + (x — 2", V(")) = f(z),

for all & € C.

Now suppose that R > 0 entries of A* are positive — without loss
of generality, we will take these to be the first R,

Al>0, A;>0, -+, A>0, Appy =0, --- A, =0.
We can rewrite (K4) as
V@) + NVa(a?) + o+ NpVan@) =0, (2)
and note that by (K3),

gl(m*) = O, .. ,gR(w*) = 0.

Consider any « € C, x # x*. As C is convex, every point in between
x* and « must also be in C, meaning

gn(@"+0(x —x") <0=g,(x*), m=1,...,R,

is an intersection of sublevel sets.

14
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for all 0 < 6 < 1. This means that £ — 2* cannot be an ascent
direction, and so

(x —x*, Vg,(x) <0, m=1,...,R.
[t is now clear that
(x —x*, Vf(xr)) >0,

as otherwise there is no way (2) can hold with positive \,,. Along
with the convexity of f, this means that

flx) = f(@") + (x —x", V(7)) = f(x).

Since this holds for all € C, &* is a minimizer.

Necessity

To establish the necessity of the KK'T conditions, we need one piece
of mathematical technology that we have not been exposed to yet.
The Farkas lemma is a fundamental result in convex analysis; we
will prove it in the Technical Details section.

Farkas Lemma:
Let A be an M x N matrix and b € R*. The exactly one of the
following two things is true:

1. there exists & > 0 such that Ax = b;
2. there exists A € RM such that

A'XA <0, and (b,A) >0,

15
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With this in place, we can give two different situations under which
KKT is necessary. These are by no means the only situations for
which this is true, but these two cover a high percentage of the cases
encountered in practice.

Suppose x* is a solution to a convex program with affine inequality
constraints:

minimize f(x) subject to Ax <b.

RN

Then there exists a A* such that x*, X\* obey the KKT conditions.

In this case, the constraint functions have the form
gm(x) = (x,a,) —b,, andso Vg,(x)=a,,

where a; is the mth row of A. Since x* is feasible, K1 must hold.
If none of the constraints are “active”, meaning g,,(x*) < 0 for
m = 1,..., M (and so x* lies in the interior of C), then it must be
that V f(x*) = 0, and K2-K4 hold with A = 0.

Suppose that there are R active constraints at a*; without loss of
generality, we will take these to be the first R:

g(x*) =0, gu(x*) =0, ..., gr(x”) =0,
gRH(aS*) <0 s ey gM(:B*) < 0.
We start by taking Agy1 = Aro = - -+ = Ay = 0, which means K3
will hold. Suppose that there were no A > 0 such that
V(@) +MVagi(x*) + -+ AgVgr(x®) = 0. (3)
16
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With A" R x N consisting of the first R rows of A, and b’ € R”
as the first R entries in b, this means that there is no A" € R¥ such
that

A" XN = -Vf(x*), XN>0.

By the Farkas lemma, this means that there is a d € R such that
Ad<0, (d,-Vf(xr)) >0,
which means, since Vg,,(x) = a,,,

(d,Vf(x¥) <0
(d,Vgi(x¥)) <0

(d, Vgr(a) <0

This means that d is a descent direction for f, and is not an ascent

direction for g1, . . ., gg. Because the constraint functionals are affine,
if (d, Vg,,(x*)) = 0 above, then g,,(x*+td) = g,,(x*) — this means
that moving in the direction d will not increase g1, ..., g,,. Since the

last M — R constraints are not active, we can move at least a small
amount in any direction so that they stay that way. This means that
there exists a ¢t > 0 such that

fl@™ +td) < f(x"),
but also maintains feasibility:
gn(x*+td) <0, m=1,..., M.

This directly contradicts the assertion that a* is optimal, and so
ALy« -y Ar > 0 must exist such that (3) holds.

For general convex inequality constraints, there are various other
scenarios under which the KK'T' conditions are necessary; these are

17
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called constraint qualifications. We have already seen that
polygonal (affine) constraints qualify. Another set of constraint qual-
ifications are Slater’s condition;

Slater’s condition: There exists at least one strictly feasible
point; a @ such that none of the constraints are active:

gi(x) <0, gaofx) <0, -, gulz) <0

Suppose that Slater’s condition holds for ¢y, ..., gy, and let x*
be a solution to

minimize f(x) subjectto ¢, <0, m=1,... M.

RN

Then there exists a A* such that x*, X\* obey the KKT conditions.

This is proved in much the same way as in the affine inequality case.
Suppose that x* is a solution, and that

gl<w ) ( *) )t gR(w*) — 07
9R+( ") < oy gu() <0
We take A\piy = -+ = Ay = 0, and show that if there is not
A,..., Ap >0 such that
R
V@) + ) AuVa(x?) =0, (4)
m=1

then there is a another feasible point with a smaller value of f.

18
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By the Farkas lemma, if there does not exist a Ay, ..., Ap > 0 such
that (4) holds, then there must be a w € RY such that

(u, Vf(xr)) <0
(u, Vg () <0
(w, Vgn(x)) < 0.

Now let z be a strictly feasible point, g,,(z) < 0 for all m. We know
that

0> gm(Z) > gm(w*)+<z—m*, vym(w*» = <Z—£B*, ng(ﬂ'ﬁ*» <0,

form=1,..., R, since then g,,(x*) = 0. So u is a descent direction
for fy,, and z — x* is a descent direction for all all of the constraint
functions g,,, m =1, ..., R that are active.

We consider a convex combination of these two vectors
dy=(1—-0)u+0(z—x).

We know that (dy, Vg,,(x*)) <Oforall0 <8 <1, m=1,...,R.
We also know that there is a 6 small enough so that dy is a descent
direction for fy; there exists 0 < €y < 1 such that

(d.,, Vf(xr)) <O.

Finally, we also know that we can move a small enough amount in
any direction and keep constraints gp.1, ..., gy inactive. Thus there
is a t > 0 such that

flx*+1td.,) < f(x*), gnlx*+td,) <0, m=1,... M,

which directly contradicts the assertion that x* is optimal.

19
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It should be clear from the two arguments above that Slater’s condi-
tion can be refined — we only need a point which obeys g,,(z) < 0
for the g,, which are not affine. We now state this formally:

Suppose that g;, ..., gy are affine functionals, and gapryq, ..., g
are convex functional which are not affine. Suppose that Slater’s
condition holds for g1, ..., gy, and let * be a solution to

minimize f(x) subject to gn(x) <0, m=1,..., M.

reRN

Then there exists a A* such that x*, X\* obey the KKT conditions.

The above statement lets us extend the KK'T conditions to optimiza-
tion problems with linear equality constraints, which we now state.

20
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KKT (with equality constraints)

The KKT conditions for the optimization program

minimize f(x) subjectto g¢,(x) <0, m=1,...,M (5)
hy(x)=0, p=1,...,P

xr

inx € RY, A€ RY, and v € RY are

gm(x) <0,

h,(x) =0,

A> 0,

)\mgm(w) — 07
M P

V folx) + Z AV gm(x) + Z v,Vh,(x) =0,
m=1 p=1

m=1,..., M,
p=1,...,P
m=1,..., M,

(K1)

(K2)
(K3)

(K4)

We call the A and v above Lagrange multipliers. Notice that
A is constrained to be positive, while v can be arbitrary. Also, if
the h, are affine, which they have to be for the program above to be
convex, then we can write the equality constraints

hy(x)=0, p=1,...,P as Ax=0b,

for some A : P x N and b € R”. Also, we can rewrite (K4) as

Vf(x)+ Z AV gm(x) + A'v = 0.

If the g, are convex and the h, affine, then the KK'T conditions

are sufficient for * to be the solution to the convex program (

21
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If Slater’s condition holds for the non-affine g,,, then they are also
necessary. Almost nothing changes in the proofs above — we could
simply separate an equality constraint of the form (x,a) = b into
(x,a) —b < 0and (x,—a) + b < 0. Then we can recombine the
result, taking v = A\; — A9, where A; is the Lagrange multiplier for
(x,a) — b and )\, is the same for (&, —a) + b.

22
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Technical Details: Proof of the Farkas Lemma

We prove the Farkas Lemma; if A is an M x N matrix and b € RM
is a given vector, then exactly one of the following two things is true:

1. there exists & > 0 such that Ax = b;
2. there exists v € R such that

A'v <0, and (b,v)>0.

It is clear that if the first condition holds, the second cannot, as
(b,v) = (x, A"v) for any x such that Az = b, and (z, A"v) <0
for any & > 0 and Alv <o.

It is more difficult to argue that if the first condition does not hold,
the second must. This ends up being a direct result of the separating
hyperplane theorem. Let C(A) be the (convex) cone generated by
the columns a4, ...,ay of A:

N
C(A):{’UGRM ; v:Zenan, 6, > 0, nzl,...,N}.

n=1

Then 1 above is clearly equivalent to b € C(A). Since C(A) is closed
and convex, and b is a single point, we know that if b ¢ C(A), then

C(A) and b are strongly separated by a hyperplane. That is, if
b & C(A) implies that there exists a v € RM such that

v'b>v'A forall XeC(A),
which is the same as saying

v'b> sup v' A =supv'Azx.
AEC(A) x>0

23
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We know that 0 € C(A), so we must have v'b > 0. The above
equation also gives a finite upper bound (namely whatever the actual
value of v'b is) on the function v Ax for all @ > 0. But this

means that A'v < 0, as otherwise we would have the following
contradiction. If there were some index n such that (A'v)[n] = € >
0, then with e,, > 0 as the unit vector

1, k=n,
e”[k]:{o k+#n’

we have

supv' Az > supv' A(ae,) = sup ae = o0,
x>0 a>0 a>0

which contradicts the existence of this upper bound.

References
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Lagrange duality

In the previous lecture, we derived the KKT conditions for mini-
mizing a convex function under convex inequality constraints and/or
affine equality constraints. This involved introducing additional vari-
ables v and A. Here we will provide an alternative perspective on
these problems and provide a bit more intuition as to how to interpret
these additional variables.

The Lagrangian

We again consider an optimization program of the form

miileig]lvize f(x) (1)

subject to gn(x®) <0, m=1,...,M
Ax =b.

We will focus on the case where the objective function f and the
inequality constraints g,, are convex, and the equality constraints
are affine (note that for equality constraints, convexity is equivalent
to being affine). However, in general much of what we have to say
applies to arbitrary (nonconvex) problems as well so we will be clear
when we are or are not assuming convexity. We will take the domain
of all of the g,, to be all of RY below:; this just simplifies the exposi-
tion, we can easily replace this with the intersections of the dom g,,.
We will also assume that the feasible set

C={x : gulx)<0m=1,...,M, Ax = b}

is non-empty and a subset RY.
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The Lagrangian takes the constraints in the program above and
integrates them into the objective function. Specifically, the La-
grangian associated with (1) is

Lz, A\, V) )+ Z Angm() + V' (Ax — b).

For reasons that will become clearer below, the & above are referred
to as primal variables, and the A\, v as either dual variables or
Lagrange multipliers.

The Lagrangian allows us to transform the constrained optimization
problem in (1) into an unconstrained one. Specifically, suppose for
the moment that we are interested in a problem of the form in (1)
but without equality constraints. Consider the problem given by

minimize )+ AmGm ( 2
nimize f(x Z g (2)
To get some intuition, suppose that we set the A, ..., Ay to be very

large (positive) numbers. In this case, violating any of the constraints
(allowing g,,,(x) > 0) will result in a very large penalty being added
to the objective function, so that by setting the corresponding A,, to
be large we will eventually guarantee that the resulting solution will
satisfy the desired constraints.

The problem here is that large values of A, not only avoid the setting
where g,,(x) > 0, but actually encourages g,,(x) < 0 (since we
can potentially benefit by not just satisfying the constraints but by
exceeding them by a large margin).

26
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This raises a natural question: can we set A so that the solution
to the unconstrained problem (2) is the same as the constrained
problem (1)? Here we will provide an answer in the case where the
objective function f and the constraints gy, ..., gy are both convex
and differentiable.

Suppose that @* is a solution to the constrained problem (1). If
we want &* to be a solution to (2), then a necessary and sufficient
condition is

VL(x",A) =V f(xr)+ Z AV gm(x*) = 0. (3)

At this point you might want to compare (3) with condition (K4)
from the second two examples from the previous lecture. (Hint: they
are the samel)

If we knew &* already, finding a A that would make the unconstrained
and constrained problems equivalent (meaning that they both have
the same solution &*) would just amount to finding a A such that (3)
holds. Unfortunately, this might not seem to be particularly useful
since x* is what we are trying to find to begin with.

To see how we might compute a A that makes the unconstrained
and constrained problems equivalent, we will need to begin our first
exploration of one of the deepest and most important ideas of opti-
mization: duality.

27

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 17:26, October 20, 2021



The Lagrange dual function

We can think of the unconstrained optimization problem (2) as ac-
tually representing a family of different optimization problems (de-
pending on A). For any fixed A, imagine solving (2) and computing
the minimal value of the objective function — we can think of this as
actually defining a function that maps A € R™ to R. Specifically,
returning to the case where we have both inequality and equality con-
straints, the Lagrange dual function d(\,v) is the minimum®
of the Lagrangian over all © € RY:

M
: T
d(A\,v) = mzrﬁ%fN (f(:l:) + mZ::l Angm(x) + v (Az b)) :
Note that since the dual is the pointwise infimum of a family of affine
functions in A, v, the Lagrange dual function is always concave,
regardless of whether or not f, g,,, and equality constraints are con-
vex. While we will not stress this much here, this is a remarkable
fact and can be very useful when dealing with nonconvex problems.

A key fact about the dual function is that it can provide a lower
bound on the optimal value of the original program. In the discussion
below, we assume throughout that v and A > 0 are arbitrary. Our
main claim is that if p* = f(x*) is the optimal value for (1),* then
we have

d(X\,v) < p-.

This is very easy to show. Specifically, for any feasible point x’, we

"We are writing inf instead of min here since we in general cannot be sure
that the minimum exists. It very well may be that d(\, v) is —oo.

*We use p* instead of f* to indicate the optimal value of the primal problem,
which we will soon be opposing to the optimal value of the dual problem.
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must have g,,(«’) < 0 for all m and also Az’ = b, and hence
M
Z Angm(x) + v (Ax' — b) < 0.
m=1

From this we have that
£(wl7 A? V) S f(wl>7
meaning that

d(A,v) = min L(x, A\, v) < L(z' A\ v) < f(2).

reRN

Since this holds for all feasible &, including the minimizer of (1), we
have d(A, v) < p*~.

The (Lagrange) dual problem

Given that d(\,v) provides a lower bound on p*, if you wanted to
get an idea of what p* looks like (for example, to see if you are close
to convergence), it is natural to see how large you can make this
lower bound. This gives rise to what we call the (Lagrange) dual
problem of (1):

ma>§\imize d(A,v) subject to A > 0. (4)

The dual optimal value d* is

d*= sup d(\,v)= sup inf L(x, A V).

A>0,v A>0,0 TERN
Since d(A, v) < p*, we know that
d- <p”.
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The quantity p* — d* is called the duality gap. If p* = d*, then we
say that (1) and (4) exhibit strong duality.

We will soon discuss when strong duality holds, but first, why is it
important? Suppose that &* is a solution to the original constrained
problem (1) —which we will call the primal problem to distinguish
it from the dual problem — and suppose that (A", *) is a solution
to the dual problem (4). It turns out that if we have strong duality,
then (A, v*) is exactly what we need to make x* the solution to the
unconstrained problem (2).

To see why, note that if we have strong duality then
f(x*) = d(X", V")

. *T -
— mleIIlRifN ( Z N gm(x) + v (Ax b))

)+ Z N g(x*) + v (Az* — b)
< fla"). (5)

where the last inequality follows from the facts that we must have
Ar >0 and g,(x*) < 0 and that Ax* = b. Looking at this entire
chain of inequalities, where the first and last term are both f(ax*),
means that

f(x*) = min L(x, X", V") = L(x*, X", V"),

TeRN

In words, a solution to the primal problem a* is also a minimizer of

L(x, X", v").
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Strong duality and Slater’s condition

As we have just seen, when we have strong duality there is a very close
connection between the solutions of the primal and dual problems. So
when can we expect strong duality to hold? For nonconvex problems,
we rarely have strong duality, but for convex problems we usually
(but not always) do.

Convexity is not quite enough to ensure strong duality, but there
are additional conditions that we can require that will ensure that
strong duality holds. Perhaps the most commonly encountered such
condition is called Slater’s condition. Informally, Slater’s condi-
tion simply says that the feasible set has a non-empty interior. More
formally, Slater’s condition can be expressed as:

Slater’s condition: There exists at least one & such that for
each inequality constraint g,,, either g, is affine or

gm(x) < 0.

That is, there is an @ that is strictly feasible for all non-affine
constraints.

Nearly all of the optimization problems that we will encounter in
this course will satisfy this condition. There are, however, convex
problems that do not. As a simple example, let p, = [1,0]" and
p, = [—1,0]" and consider the constraints

gi(@) =z —pfl; -1 <0

g(x) = |z — pof; — 1 < 0.
Note that the only @ satisfying both constraints is & = 0 and there
are no strictly feasible points.
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Certificates of (sub)optimality

One potential application of the above facts is to serve as a way of
measuring how far away we are from finding an optimal solution to
our optimization problem. To see this recall that any dual feasible’
(A, v) gives us a lower bound on p*, since d(X,v) < p*. Thus, if we
have a primal feasible x, then we know that

flx)—p < flx) —dAv).

We will refer to f(x) —d(X, v) as the duality gap for the primal /dual
(feasible) variables @, A, v. We know that

p" € ldA v), f(x)], andlikewise d* € [d(A,v), f(x)].

If we are ever able to reduce this gap to zero, then we know that x
is primal optimal, and A, v are dual optimal.

There are certain kinds of “primal-dual” algorithms that produce a
series of (feasible) points @y, Ay, vy at every iteration. We can then
use

flxr) — d(XAy,vy) <,

as a stopping criteria, and know that our answer would yield an
objective value no further than e from optimal.

We simply need A > 0 for (X, v) to be dual feasible.
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Examples

1. Inequality LP. Calculate the dual of

minimize (x,c) subject to Az <b.
reR

Answer: The Lagrangian is

L(x,\) = {(x,c)+ i Am ((x, @) — by,)
=c'z — )\?;14— A Az,
This is a linear functional in & — it is unbounded below unless
c+A'X=0.
Thus
d(X) = inf (cTa: —A"b+ )\TACU)
_ {—<A, by, c+A"™A=0

—00, otherwise.

So the Lagrange dual program is

ma}\xilénize —(\,b) subject to A'A = —c
c M
A>0.
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2. Least-squares. Calculate the dual of

minimize ||x||3 subject to Az =b.
xRN

Check that the duality gap is zero.

Answer: The Lagrangian is
Lz, v)=z'z—-v'b+v' Az,

This is quadratic in @ and will attain its minimum for

1

x=——A'v.

2

Thus
. T .
d(l/)ZZV AA'v—b>b V- v AA' v
1
= —ZVTAATV — by,

and the Lagrange dual problem is

. 1
maximize ——vTAAY — by,
veRM

Note that this will be maximized when —1 AA"v* = b, which,
when substituted into the dual problem yields

2

1 1 1 1
——V*TAATI/*—I——V*TAAT*I/ _ _V*TAAT * __ATV*

4 2 4 2 2
Since £* = —A'v*/2 is primal feasible, we have found a

(x*,v*) such that f(x*) = d(v*), so we see first hand that
we have strong duality.
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Example: Support vector machines

Consider the following fundamental binary classification prob-
lem. We are given points &, ..., xy € RY with class labels
Y1, - - Yar, where y,, € {—1,+1}. We would like to find a
hyperplane (i.e., affine functional) which separates the classes:

R

Hs

7 >

Ho

H, and H, above both separate the classes in R?, but H; does
not. While separating the classes is obviously desirable, we still
need a good method to choose from among the many hyper-
planes that do separate the classes — and some will perform
better than others. Support vector machines (SVMs) take the
one with maximum margin, i.e., we choose the hyperplane
that maximizes the distance to the closest point in either class.

To restate this, we want to find a w € RY and b € R such that

(,, w) —b>1, wheny, =1,
(@, w) —b< —1, when y, =—1.
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Of course, it is possible that no separating hyperplane exists; in
this case, there will be no feasible points in the program above.
It is straightforward, though, to modify this discussion to allow
“mislabeled” points.

In the formulation above, the distance between the two (paral-
lel) hyperplanes is 2/||w||2:

7~

<

\
\
2\

lwlla | 7

Thus maximizing this distance is the same as minimizing ||w||».

This leads to the program

1
minimize —||’wH2

weRN, beR
subject to ym(b—<mm,w>)+1 <0, m=1,..., M.

This is a linearly constrained quadratic program, and is clearly
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convex. The Lagrangian is

1 M
/:’(,wa b, >‘) - 5”“’“3 + Z Am [ym<b - <mm7 w>> + 1]
m=1
1
= éHwH% oy — A X Tw + A1,

where X is the N x M matrix

X = &1 Yoy -+ YuTy

The dual function is
1
A(A) = inf (§Hw||§ ATy — ATX T+ )\T1> |

Since b is unconstrained above, we see that the presence of
bA'y means that the dual will be —oo unless (A, y) = 0.
Minimizing over w, we need the gradient equal to zero,

Vol(w,b,A) =0, = w—XA=0.

This means that we must have w = XA\, which itself is a
very handy fact as it gives us a direct passage from the dual
solution to the primal solution. With these substitutions, the
dual function is

dA) — {%HXA% —ATXTXA AL, (A y) =0,

—00, otherwise.
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Thus, the dual SVM program is then

maximize — —HX)\H2 + Z A

subject to (A, y) =0, )\ > 0.

Given the solution A* to the dual, we can take w* = XA\,
and the classifier is

flx )

/\

T, w >

>*

*>_b*

th:

)‘:(nym<w7 wm> —b".

1

3
|

Notice that the data a,, appear only through inner products
with ax.

A key realization about the SVM is that the for the dual pro-
gram, the objective function depends on the data a,, only
through inner products, as

M M
||X)\H§ = Zzyzym@e,w

/=1 m=1

This means that we can replace (x,, @,,) with any “positive
kernel function” K (x, ,,) : RY @ RY — R — a positive kernel
just means that the M x M matrix K (@, x,,) is in S} for all
choices of xy, ..., x ).

For example, you might take

Kz, x,) = (1+ (x), ) = 1+ 2{x), ) + (x40, )
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This means we have replaced the inner product of two vectors
with the inner product between two vectors which have been
mapped into a higher-dimensional space:

_\/§$N—133N_

A set of linear constraints on the coordinates on the right,
then, corresponds to a second order curve constraint (parabola,
ellipse, hyperbola) on the coordinates on the left.

Many kernels are possible. The advantage is that to train and
use the classifier, you never have to explicitly move to the
higher-dimensional space — you just need to be able to com-
pute K (x,, x,,) for any pair of inputs in R, A popular choice
of kernel is

K (0, 2,,) = oxp (—lla — @)

This is a perfectly valid positive kernel, and it is straightforward
to compute it for any pair of inputs. But it corresponds to
mapping the a,, into an infinite dimensional space, then finding
a separating hyperplane.
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Here is an example of a linear classifier in a higher-dimensional
space:
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A second look at duality

Our first exposure to duality was in the context of constrained op-
timization: by introducing dual variables (Lagrange multipliers), we
can combine the objective function and constraints into a single (La-
grangian) function which we can optimize either by minimizing it
with respect to the primal variables or maximizing it with respect to
the dual variables.

However, duality is a much broader concept than what we have seen
so far, and can even be relevant in unconstrained problems.! As an
example, suppose we wish to minimize the sum of two functions:

minimize f(x)+ g(x) (1)
xRN
where f and g are both convex. For simplicity, we will assume that
dom f = dom g = R¥, although we could easily extend this to the
case where the domain is a subset of RY by replacing f and/or g
with their extension to RY. This problem is unconstrained, but we
can actually represent it as a constrained problem of the form:

minirI%]ivze f(x)+g(z) subjectto == z.
o AS

This formulation involves N affine equality constraints on the pri-
mal variables & and z of the form h,(x,2) = 2, — z, = 0. The
Lagrangian function for this problem is

L(x,z,v)=f(x)+9(z)+ (z—x,v).

"Moreover, as we will soon see, if you give up on the requirement that your
objective function is differentiable, the distinction between constrained
and unconstrained problems becomes a bit blurred.
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To derive the dual problem, we first must compute the dual function:

div)= inf f(x)+g(z)+ (z—x,v)

xz,z€RN
= inf f(x)— (@, v)+ inf g(z) - (z,—v)
rcRN zeRN
= —sup (z,v) — f(x)—sup (z,—v)—g(z)
EJG]RN , gERN J/

@) g*(—v)

where
[ w) = sw (xz,v)— f(x)
xeRN
is the convex conjugate (or Fenchel conjugate) of f. We will
try to give a bit more intuition into what the convex conjugate of a
function represents below, but first we note that if we can calculate
this function, then the resulting dual problem is
maximize — f*(v)— g"(—v
wimize — f'(v) - g"(~v)
or equivalently
minimize f*(v)+ g*(—v). (2)
veRN
Before we can see this in action on some real optimization problems,
however, we first need to understand what the convex conjugate is
and, given a function f, how to actually compute f*.
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The convex conjugate

Before going any further, the first thing to say about the convex
conjugate is that it is, as its name might suggest, convex. In fact,
f*(v) is convex, even if f(x) is not. We have seen the argument
for this before: f*(v) is the pointwise supremum of convex functions
since for any fixed @, (x,v) — f(x) is a convex (affine) function).

The convex conjugate plays a fundamental role in duality. Before
we assumed that dom f = RY, but it will sometimes be useful to be
explicit about the domain. If we let D = dom f, then the convex
conjugate of f is

Fw) =swp (@,v) — flx),

xeD

There are multiple ways to think about the convex conjugate. Per-
haps the most natural is simply that f*(v) is simply the maximum
amount that the linear functional (x, v) exceeds f(x).

Let’s consider a particular example in one dimension (N = 1). Sup-

pose
fla)=2"-20+2=(z—17+1.

We have

2
f*(y):sup(z/x—:c2+2x—2):VZJrl/—l.

zeR

(You can verify the second equality by taking the derivative with
respect to x, setting this to zero, and solving for . This results in
v = % — 1, and plugging this in yields the result above.)
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Here is an example of what is happening:

7
vr -
'd

Here we illustrate a function f(z) overlayed with v for an example
value of v. The wvertical difference between the two functions is
maximized at a particular value x*; and this distance is f*(v).

Another way to think about f*(v) is that it tells us how far we need
to shift v down so that it will be tangent to f(x) (or a subgradient
of f at x if f is not differentiable), as illustrated by the dashed line.
In the case where f is differentiable, this is easy to see: since f
is convex, —f is concave and vr — f(x) will be maximized when

v— f'(x)=0.
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Properties

f*(v) is convex (even when f(a) is not).

Fenchel’s inequality: For any « and v we have
fl@)+ [ (v) = (x,v).
For any function f(x), we can define the conjugate of f*(v) as

(@) = sup (v, @) — f(v),

veD*

where D* is the domain of f*. For an arbitrary f(x) we have
f7 @) < flz)

If f(x) is convex and has a closed epigraph, then taking the
conjugate of f*(v) recovers f(x):

fx) = flz).
If f(x,xy) can be written as the sum of two independent

variables:
flx1, ) = fi(1) + fo(zs),

then
fila, ay) = fi(a:) + fi(ay).

For more properties, see | , Chapter 3.3].
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Examples
The Indicator Function

We define the indicator function or characteristic function
for a convex set C is given by

0, if v €C,
fefx) = {+oo, if 2 ¢ C.

The convex conjugate of the indicator function is

he(w) = [3(v) = swp (@, v) — o(@)

RN

= sup (x, V).
zcC

The function he(v) is also called the support function of C. The
support function defines a vector v € R that defines a linear func-

tion on C and then returns the maximum value of that linear function
over C.

Geometrically, this corresponds to taking the half-space {x : (x,v) <
b} and then determines how large b needs to be to ensure that
the half-space contains all of C (since by definition we will have
(x,v) < he(v) for all x € C).

This is illustrated with an example on the following page.
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‘ {x: (x,v) = 3.89}
3
1 1
2 _
RV H

L he(v) = 3.89

1 2 3 ]
N {z: (x,v) =3}
| o=
1 ‘I/ hc(l/ =3

1 2 3 "

-
he(v) = —1.41
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Norms

As we have already seen on many occasions, norms frequently arise
in optimization problems as either objective functions or constraints,
and so their convex conjugates are important to be able to compute
and work with. Before discussing the general case, let’s look at what
happens for f(x) = ||x||> to get an idea of what we will need to do.
In this case we have

f'(w) = sup (z,v) — ||z

RN

= sup ||z[]2||lv]e — ||z
RN

= sup |[[[]2([[v]: — 1),
RN

where the second inequality above follows from Cauchy-Schwarz (which
can be made to hold with equality). There are two cases to consider
here. If ||v]|s < 1, then we are trying to maximize a non-positive
quantity, which we can do simply by setting & = 0, resulting in
f*(v) = 0. However, if ||v||; > 1 then ||x|2(||v]s — 1) can be made
arbitrarily large. Thus

) = {o, if [|v]l, < 1,

o0, if ||v]ls > 1.

In other words, f*(v) is the indicator function for the unit ball cor-
responding to || - ||2.

Now suppose that f(x) = ||x| where || - || denotes an arbitrary
norm. To extend the argument above, we will need to re-introduce
a the dual norm (which we first encountered in our discussion of
subdifferentials).

48

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 13:21, October 27, 2021



Recall that for a norm || - || the dual norm is defined as

[v|.= sup (z,v).
x:||x|| <1

Note that this is the support function (the convex conjugate of the
indicator function) of the unit ball corresponding to || - ||. Moreover,
as a direct consequence of the definition of the dual norm we have

(@, v) < [lz||lv]..

This is exactly what we need to extend our previous argument.

We again begin with setting f(x) = ||z|| and wish to compute

frw)=sup (z,v)— |z

reRN

As before, we can consider two cases. If ||v]|, <1 then
(@, v) = |lz|| < [[z]|[lv]. —[lz] <0.

In this case the largest we can make f*(v) is zero (by setting & = 0).
On the other hand, if ||v||. > 1 then there must exist an & such that
(x,v) > ||x||. If we replace this & by a rescaled version ta, then we

can make
(tx,v) — [[tz| = t((z,v) — [|z])

arbitrarily large. Thus we have

too, if |y, > 1,

i.e., f*(v) is the indicator function for the unit ball corresponding to
the dual norm || - ||..

For lots of other examples, see | , Chapter 3.3].
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Fenchel duality

We began these notes by showing that if we consider the uncon-
strained problem
minimize f(x)+ g(x) (3)

where f and g are both convex, we can derive the equivalent dual
problem
maximize — f*(v) — g*(—v). (4)

v

Recall from our first discussion of Lagrange duality that the dual
problem provides a lower bound for the primal problem, or in the
language of the problems above, we have

inf f(@) + g(@) = sup —f'(v) = g'(-v).

Moreover, under certain conditions we have strong duality. In this
setting, strong duality implies that the above inequality will hold
with equality, i.e.,

inf f(z) + g(x) = sup —f*(v) — g"(-v). (5)

Fenchel’s Duality Theorem tells us that under certain reg-
ularity assumptions on f and g, we have strong duality and (5)
holds.? Specifically, if D = dom f and C denotes the set of & € RY
where g is finite and continuous, then (5) holds whenever there exists
an & € relint(D N C).

’In our discussion here as well as when reviewing Lagrangian duality, we
have assumed that inf, f(x) 4+ g(«) is finite (so that these quantities are
even defined). If the primal (or dual) is not bounded, then there is no
solution to the optimization problem and strong duality will not hold.
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Note that if g(a) is the indicator for a convex set C, then this is
equivalent to a constrained optimization problem, and the conditions
above are equivalent to the assumption that there is a strictly feasible
point in dom f, i.e., Slater’s condition. In this case we can also
write (5) more cleaning if we define a new function hy(v) which is
related to the support function of C, just with an infimum instead of

a Supremuin:

he(v) =inf (x,v) = —sup (x,—v) = —he(—v).

With this notation we can re-write (5) for the case of standard con-
strained optimization as

inf f(@) =sup he(v) = f'(v). (6)
We will not do so here, but from this point you can actually show that
if our constraints match the form that is assumed in our discussion
of Lagrangian duality, then the right-hand side of (6) exactly cor-
responds to the Lagrangian dual problem. In this sense Lagrangian
duality is just a special case of Fenchel duality.

Super-Easy Example

Before we look at serious applications of Fenchel duality, let’s look at
a very simple example just to get a feel for the computations involved.
We will compute
inf 2
x€[3,5]

Of course, we know the answer already: it is 27, as the function above
achieves its minimum value at z = 3. But let’s verify the Fenchel
duality theorem for this case.
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We will take f(x) = 2 which is convex over the non-negative reals,
so we take D = {z : x > 0}. The constraint set is the interval
C = [3,5]. First we compute

v, v >0,
v, v <.

he(v) = inf vz = {

x€[3,5]
The conjugate of f is

f(v) =sup (vo —z?).

x>0

For fixed v > 0, this expression is maximized at z* = /r/3; for
v < 0 it is maximized at z* = 0. Thus

0, v <0.

Thus

_2 /v
max () — f*(v)] = max{gy sV v=0

veR veR | by, v < 0.

It is easy to check that this expression is maximized at v* = 27
(coincidence), and that

2 3
3V — — v = 27.
3V 3
v=27
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Example: Resource allocation | ]

The “law of diminishing returns” is a fundamental tenet of economics:
as we put more and more resources into something, at some point,
the incremental gains become less and less. You see this everywhere:
what is the difference between spending $5 on dinner, $50 on dinner,
$500 on dinner? What are the differences between a $50 bicycle, a
$500 bicycle, and a $5000 bicycle?

What this means is that functions f(z) that map resources to return
are concave.

Suppose we have D dollars that we would like to allocate to N differ-
ent activities in such a way that maximizes the return. The return of
each activity is a (possibly different) concave function f,(x,), where
x,, is the amount of money invested. Our optimization problem is

TeRN

N N
maximize f(x) = Z falx,) subject to Z x, =D
n=1 n=1
x >0,

or equivalently

N
. . . rY - -b. t t " — D
minitnize f(x) f(x) subject to ;az

x >0,

This is a convex optimization problem in N variables, and of course
its solution depends on what we actually choose for the return func-
tions f,(x,). However, by using Fenchel duality, we can recast this
problem as an optimization in a single variable.
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Since the natural domain of the f,, is x > 0, let’s take
D={x:x>0}, C={x: x4+ ---+ay=D}.
We start by computing
he(v) = inf (x,v).

xeC

Since C is itself an affine set, h;(v) is unbounded below for almost
every v we plug in — the exception is if all of the entries of v are
equal to one another. In this case,

v=2Al, hy(v)= DA,
where 1 is an IN-vector of all ones. Thus, we have

. DX, v=J\1
he(v) = {

—00, otherwise.

Now we compute the conjugate f*(v) of f(x) = —f(x). Since f is
a sum of convex functions of independent variables,

fiv)= Z (),

where f*(v,) is the conjugate of a function of a single variable:

f;’;(z/n) = sup [l/nfb — fn(x)} .
x>0
This means we can write the dual as

max [hlc(l/) — f*(l/)] = max [D)\ — iv: f;()\)] :

v

That is, the expression to be minimized is a function of a single
variable \. All we need to know how to do is evaluate the conjugate
functions f.
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Example: Norm minimization

Here we look at an example of how we can apply Fenchel duality
to provide an alternative characterization of a common constrained
optimization program. Consider the “norm minimization” problem:

minimize ||| subject to Ax =y,

where the vector y € RM and matrix A € R**Y are given and we
assume that rank(A) is at most IV so that we are guaranteed that
there is at least one feasible solution. Here the norm in the objective
function is an arbitrary norm. We will derive the dual for the general
case, which could then be specialized to tell us something about least
squares (for the ¢, norm), “Basis Pursuit” (for the ¢; norm), or the
result for any choice of norm.

We have already calculated f*(v) for the case where f(x) = ||z||. In
this case f*(v) is the indicator function for the set {v : ||v||. < 1}.
If we plug this into (6) we see that the objective function will be
—oo unless ||v]|. < 1, and thus we can equivalently write the dual
problem as

maximize h(v) subject to ||V, < 1,

v

where C = {x : Ax = y}. This, it remains to calculate hy(v).

We first note that if (u, v) # 0 for some u € Null(A), then hy(v) =
—00. To see this, note that if w € Null(A) then for any « € C and
t € R, Alx +tu) = y. Thus, x +tu € C, and (x + tu,v) =
(x,v) + t{u,v), which is unbounded since ¢ can be arbitrary.
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What remains is to calculate hp(v) for v that are orthogonal to
Null(A). Recall that this is equivalent to the assumption that v €
Range(A"). For any such v we can write v = A'w for some
w € RM in which case

inf (x,v) = inf (x, A"w)

xeC xecC

= inf (Ax,w)

xeC

= inf (y,w)

xeC

= (y, w).

Thus, if we replace v in our dual problem with A w and optimize
over w instead, we arrive at the dual problem

maximize (y,w) subjectto ||A'w||. < 1.

As an example, if we consider the £;-norm minimization problem
(also known as “Basis Pursuit”) where ||-|| = || ||1, the dual becomes

maximize (y,w) subject to ||ATw]||. < 1.
Note that this is a standard linear program. This can be a useful
observation from a computational perspective, but later in the course
we will show how Fenchel duality for this problem can also be used to
provide a theoretical characterization of the properties (e.g., sparsity)
of the solution x* of the primal problem.
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Example: Closest point problem

Recall our closest point to a (closed) convex set C problem

minimize | — @o]|o-

We already know that there is a unique primal solution (unique clos-
est point) a*. From our work above, we know that the dual of this
problem is

maximize —he(—v) — f*(v),

where he is the support function for C defined above and

fi(v) = su% vie — | — 2|2
xeclR

=vix,+ sup v'z' — ||z'||;
x'eRN

_ VT{BO? HVHQ S 1
o, HVH2 > 1.

Thus the dual is equivalent to

maximize — he(v) — v'ay,
lvll2<1

which (by maximizing over —v in place of v) is again equivalent to

maximize d(v) = v xy — he(v).

lvll2<1
Note that
dv) =v'z)—supv'z
zcC
= inf v'(xy— )

zeC
<v'(x,—x
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From the problem statement, we know that we have strong duality,
so there exists a v* with [|[v*]|s < 1 such that

d(v") = |leo — x|
Since it is also true that for all v with ||v]ls < 1,
dv) <vi(zy—x") < [lzg — 7|2,
by Cauchy-Schwarz we must have
xry)— x*

*

1 4

B P

Let’s take a little closer look at the dual function
d(v) =v'zy — he(v).

Given a fixed v, we know that (v, he(v)) define a supporting hyper-
plane for C, i.e.

vix — he(v) <0, forallz eC.

When the dual d(v) > 0, i.e. vixy — he(v) > 0, we know that
hyperplane separates x, from C. For ||v||s = 1, we also know that
vz — he(v) is the distance to the separating hyperplane, and over
all separating hyperplanes with normal vector v, (v, he(v)) is the
one that is farthest away:.
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Thus we can interpret the dual program as a search over all hyper-
planes that separate &y and C and choosing the one that is maximally

distant from x,.
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Algorithms for constrained optimization

There are many, many constrained optimization algorithms, each
tuned to the particulars of different classes of problems. We will look
at the basics that underlie some of the more modern techniques. We
will see that the concept of duality both helps us understand how
these algorithms work, and gives us a way of determining when we
are close to the solution.

We will describe several techniques. Nearly all of these ultimately
work by replacing the constrained program with an unconstrained
program (or a series of unconstrained programs).

Eliminating equality constraints

The first approach is not so much an algorithm as a “trick” that lets
us sometimes avoid even thinking about the constraints. Programs
with linear equality constraints can always be written as programs
without, and if there are no inequality constraints then the new pro-
gram is unconstrained. To see this, suppose we are solving

minimize f(x) subjectto Ax =b.
xeRN

Let xy be any point satisfying Axy = b. Then any feasible & can
be written as & = xy + h, where h € Null(A). Note that Null(A)
is a linear subspace of dimension K = N —rank(A). If Q is a basis
for this space, we can write and h € Null(A) as h = Qw. Using
this we can re-write the program above as

minimize f(xy,+ Qw).
weRK

Sometimes this method can be very helpful, but note that computing
x, and Q) could potentially be expensive.
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Projected gradient descent

Now suppose that we wish to solve the constrained optimization
problem

mininmize f(x)

where f is a differentiable convex function and C is a convex set in
RY. Another way to express this problem is as the unconstrained
problem

minimize f(x)+ Ie(x), (1)

xeRN
where I denotes the indicator function for the set C. We have previ-
ously encountered this idea in the context of duality, but in terms of
suggesting practical algorithms, this has some obvious shortcomings.
Namely, since Io(z) is non-differentiable, we cannot apply gradient-
based methods to solving (1).

However, we have encountered some algorithms for minimizing non-
smooth convex functions. One that might seem particularly well-
aligned with (1) is the proximal gradient method. Recall that
proximal gradient method applies when our objective function con-
sists of the sum of a smooth term (in this case, f) and a nonsmooth
term (in this case, I¢), resulting in the core iteration of

Bisr = prox,, (@6 — Y f(@)).

This would yield a tractable algorithm with provable guarantees f

we can compute prox,, ;.. So what does prox,, ;. look like? Note that

, 1
pm%mwfzw@mn@d@+~—ﬂw—ZM>

xRN 20y,
= argmin ||z — z||;
xeC
— Pc(Z),
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where Pe(z) denotes the projection of z onto the set C. Note that
this holds for any ay, > 0.

Thus, the core iteration of the proximal gradient method is equivalent
to

L1 = Pc(wk — Oékvf(mk))-
That is, at each iteration we take a gradient step on f and then

re-project onto the constraint set. Notice that for any £ > 1, we are
always guaranteed that @, is feasible.

This algorithm is usually called projected gradient descent. It
is a very simple (but often effective) method for solving constrained
optimization problems when the projection onto the constraint set C
can be computed efficiently. Note, however, that this is not always
the case — sometimes computing this projection itself requires solving
a challenging optimization problem.

Of course projected gradient descent inherits the convergence guar-
antees for the proximal gradient method. In particular, if f is L-
smooth, then we know that the iterates obey

* L *
Jlaw) = fl&") < o llwo — 12
Other convergence results mirror those for unconstrained gradient
descent. In particular, if f is smooth and strongly convex, then
projected gradient descent has linear convergence. A full set of results

(along with detailed proofs) can be found in | , Chap. 3].

Example: Least-squares with positivity constraints

Suppose we want to solve
1

Ce 9 .
minimize §Hy — Ax||5 subject to x > 0.
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This is a case where the projection onto the constraint set is relatively
simple. It is easy to argue that the projection onto the set of all
positive vectors is to simply just set all of the negative entries to
zero. The projected gradient descent iteration is then

Lpt1 = (wk + Oék:AT(y — Awk))+ ;

where

Barrier methods

Another popular and even more flexible approach are barrier meth-
ods. These can be thought of as again replacing our constrained
problem with the unconstrained one in (1), but rather than attempt-
ing to minimize (1) directly, we instead solve a slight perturbation
of this problem. In particular, we replace the indicator function I
with some function b such that domb = C and b(x) — oo as x
approaches the boundary of C.

To make this concrete, consider the constrained program

minimize f(x) subjectto g¢,(x) <0, m=1,..., M.
In a barrier method we replace this with the unconstrained program
M
minimize f(x) + Z B(gm(x)),
m=1
where dom B = R_ and B(x) — oo as © — 0 from the left. Again,

unless B is the indicator function, the new program is an approxi-
mation to the original.
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An interesting choice is B(x) = —2log(—x). This particular barrier
function has the properties:

e You can analyze the number of Newton iterations needed for
convergence for many f of interest (using self-concordance).
This is done very nicely in Chapters 9 and 11 of | J.

e The solution’ *(7) of

minimize Tf(x) — Z log(—gm(x))

can be used to generate a dual-feasible point (and hence a
primal-dual gap certificate), and can be related to the KKT
conditions for the original program.

To appreciate the second point above, we start by taking the gradient
of the objective function above and setting it equal to zero. We see

that
M 1

TV f(x*(1)) + Z —_

So if we take

* _ 1 m =
ol = gy M
we have \* (1) > 0 and
F () + Y X (1) Vgular (7)) =

"We have multiplied the objective by 7 to make some of what follows a little
easier to express.
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Since x*(7) is primal feasible, the only KKT condition we are missing
is complementary slackness — we have replaced the condition

A gm(x) =0, with X (7)gn(x*(7)) = —1/T.

So if we set 7 to be increasingly large, we obtain points that satisfy
an increasingly tight approximation to the KKT conditions.

With this choice of X*(7), we can also easily compute the dual of the
original program:

d(X(7)) = inf (f () + Z_ A?n(T)gm(-ﬂL‘)>

= fla™(1)) + Z_: A7) g (27(7))
= f(@*()) — M/T.

Hence, we know that if * is a solution to the original program, then

fla(r)) = fl@") < fla’(7)) —d(N(7)) < M/T.

Thus, we know that solving the log-barrier problem gets us within
M /T of the optimal of the original primal objective.

A tull discussion of log barrier methods, including some fundamental
complexity analysis, can be found in | , Chap. 11]. One interest-
ing theoretical result there is that, with a reasonable way of adjusting
7 (multiplying it by 10 at every iteration, for example), the number
of log-barrier iterations to make the value of the barrier functional
f(x*(7)) agree with the minimal value p* to the original constrained
problem to some precision. The upshot is that there is a very close
match after ~ /M iterations. This means that in theory, solving a
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constrained problem is roughly as expensive as solving v/ M uncon-
strained problems. In practice, it is actually much cheaper — standard
log barrier iterations take maybe 20-50 iterations to produce good
results.

Primal dual interior point methods

These are closely related to log barrier algorithms, but they take a
more direct approach towards “solving” the KK'T conditions. The
general idea is to treat the KK'T conditions like a set of nonlinear
equations, and solve them using Newton’s method.

We start with the same set of relaxed KKT conditions® we used with
log barrier:

V(@) + 2 AnV gm(@)]

r.(x,\) = _)\191@) —1/7

(@) —

If we find @ and A such that the N + M-vector r.(x, A) = 0, then
we know we have found the same x*(7), A*(7) that solve the log
barrier problem.

Primal-dual interior point methods take Newton steps to try to make
r. = 0, but they adjust 7 at every step. The Newton step is char-
acterized by

r(x+ 0T, A+ 0N =~ r(x,\)+ J.(x,\) [gi] =0,

*We are again only considering inequality constraints; it is straightforward
to modify everything we say here to include linear equality constraints.
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where J,. (x, A) is the Jacobian matrix for the vector-valued func-
tion r, given by

Vif(x) + 30, A Vign(®) Vai(x) Vg(x) - Vgu(z)
—\ Vg (x)t —qgi(x) 0 - 0
—AZVQQ(LB)T 0 —go() 0

V(@) 00 - —gul@)]

The update direction is

ox _
[5>\] =—J,'r.(z,N).

With this direction, we can perform a line search. The parameter 7
is updated at every step (getting larger) based on an estimate of the
duality gap.

A key feature of this type of primal dual method is that the iterates
x;, and A; do not have to be feasible (although they of course become
feasible in the limit).

Details on this particular algorithm, along with a full convergence
analysis, can be found in | , Chap. 11.7].
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Alternating direction primal dual methods

We will now focus on a class of algorithms that work by fixing the
dual variables and updating the primal variables @, then fixing the
primals and updating the dual variables A, v. An excellent source
for this material is | |. In fact, what follows here is basically
a summary of the first 12 pages of that paper.

We have seen that when we have strong duality (which we will assume
throughout), the optimal value of the primal program is equal to
the optimal value of the dual program. That is, if *, A*,v* are
primal /dual optimal points,

f(x*) = d(X",v")
= inf L(xz, A", V"),

reRN

where £ is the Lagrangian

L(x,\,v)=f(x)+ Z Angm() + V' (Ax —b).

If L(x, \*,v*) has only one minimizer," then we can recover the
primal optimal solution x* from the dual-optimal solution A*, v* by
solving the unconstrained program

x* = argmin L(x, A", "),
xRN
“Alternating” methods search for a saddle point of the Lagrangian
by fixing the dual variables Ay, v, minimizing L(x, Ay, v;) with
respect to @, then updating the Lagrange multipliers.

"Which is the case when f is strictly convex, and in many other situations.

63

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 13:09, November 3, 2021



To start, we will base our discussion on equality constrained
problems. Incorporating inequality constraints will be natural after
we have developed things a bit.

Dual ascent

We want to solve

minimize f(x) subject to Ax =0b.
xeRN

We will assume that the domain of f is all of RY; again, things are
easily modified if this is any open set. The Lagrangian is

L(x,v)= f(x)+v' (Ax —b),
and the dual function is
d(v) = igf L(xz,v)
= ir;f flx)+v'Az —v'b
= —sup ((—ATV)TCB — f(a:)) —v'b
—F(-AT) v,
and the dual problem is
maximize d(v).

veERN

Consider for a moment the problem of maximizing the dual. A rea-
sonable thing to do would be some kind of gradient ascent:”

Vi = Vi + o Vd(vy),

2“Ascent” instead of “descent” because ¢ is concave instead of convex.
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where «y, is some appropriate step size. The gradient of d (with
respect to v) at a point vy is

Vd(vy) = Vit (f() +v(Az ~b)).

and so if €t = argmin, f(x)+ v (Ax — b), then

Vd(v) =V, (f(x") +v,(Az" — b))
= Azxz" - b.

This leads naturally to:

The dual ascent algorithm consists of the iteration

X = argmin L(x,v;)
xr

Vi1 =V + ap(Axy — b)

that is repeated until some convergence criteria is met.

This algorithm “works” under certain assumptions on f (that trans-
late to different assumptions on the dual d). In particular, we need
L(x,v) to be bounded for every v, otherwise the primal update
x). = argmin, L(x,v;) can fail.

That the Lagrangian is bounded below for every choice of v is far
from a given. Looking at

L(xz,v) = f(x)+v'(Axz —b),

we can see that if f increases slowly (sublinearly) in any direction
even partially aligned with the row space of A, then we can find a
sequence of @ that drive L(x,v) — —oo for certain v.
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Of course, this algorithm is nicest when we can solve the uncon-
strained primal update problem efficiently.

The Method of Multipliers and Augmented Lagrangians

The method of multipliers (MoM) is the same idea as dual ascent,
but we smooth out (augment) the Lagrangian to make the primal
update more robust.

It should be clear that

minimize f(x) subjectto Ax = b,
xeRN

and

minimize f(x) + gHAw —b||2 subjectto Ax =0b

reRN

have exactly the same set of solutions for all p > 0.
The Lagrangian for the second program is

Loz, v) = flz)+ gqu _ b2+ T (Az — b).
This is called the augmented Lagrangian of the original problem.
Adding the quadratic term is nice — it makes (under mild conditions
on f with respect to A) the primal update minimization well-posed
(i.e., makes the dual differentiable).
Notice that the Lagrange multipliers v appear in exactly the same

way in the augmented Lagrangian as they do in the regular La-
grangian, so the dual update does not change.
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The resulting algorithm is called the method of multipliers;
we lterate

xp = argmin L,(x, vy)
Vi =V + p(Axp, — b)

until some convergence criteria is met.

As a bonus, we now have a principled way of selecting the step size
for the dual update — just use p. To see why this makes sense, recall
the KK'T' conditions for &* and v* to be a solution:

Ax*=b, Vf(lx)+A'v =0.
With p as the step size, we have

0=VL,(xs1,V), (since xyy; is a minimizer),
= Vf<$k+1> + AT (Vk + p<A$k+1 — b))
= V(@) + A vp

So the dual update maintains the second optimality condition at
every step.

The MoM has much better convergence properties than dual ascent.
The algorithm we look at next, the alternating direction method of
multipliers (ADMM), will build on this idea in a way that makes it
applicable to functions that have a nonsmooth component and can be
easily modified to incorporate certain kinds of inequality constraints.
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Alternating direction method of multipliers
(ADMM)

ADMM splits the optimization variables into two parts, & and z,
and solves programs of the form

minimize f(x)+ g(z) subject to Ax+ Bz =c.

The basic idea is to rotate through 3 steps:

1. Minimize the (augmented) Lagrangian over @ with z and the
Lagrange multipliers v fixed.

2. Minimize the (augmented) Lagrangian over z with & and v

fixed.

3. Update the Lagrange multipliers using gradient ascent as be-
fore.

If the splitting is done in a careful manner, it can happen that each of
the subproblems above can be easily computed. We can also handle
general convex constraints (more on this later).

To make the three steps above more explicit: the augmented La-
granglan 1s

L,(x,z,v)= f(a:)+g(z)+l/T(Aw+Bz—c)+§HAa:+Bz—cH§,
and the general ADMM iteration is

xp = argmin L,(x, zy, Vy)

Zhp1 = arga;nin L (Tpi1, 2, V)

z

Vi1 = Vi + p(Axy + Bz — ©).
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The only real difference between ADMM and MoM is the we are
splitting the primal minimization into two parts instead of optimizing
over (x, z) jointly.

Scaled form.

We can write the ADMM iterations in a more convenient form by

substituting
1
n=-v.
P

By “completing the square” we have that
I/T(Aa:+Bz—c)+§HAachBz—cHg = gHAa:+Bz—c+uH§—gHuH§,

and so we can write:

ADMM:

2en —aigin (@) + 5 A + Bz - e+ )

xr

s = angmin (9(2) + 2 Ay + B2 - ot )

z

i1 = |y + Awk_H + sz-H — C
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Example: The LASSO
Recall the LASSO:

1
minimize éHAaz — b5 + 7|z
Zr

Taking
1
f(@) =5l Az —bl; and g(2) =7z,

we can rewrite this in ADMM form as

minimize f(x)+ g(z) subjectto x — 2z =0.

T,z

The x update is

, 1
Tosr — arg min (équ b+ Dzt ukuz) .

xTr

With both z, and p,, fixed, this is a regularized least-squares problem
and is equivalent to:

2

min
T

\ [f; 1] tT [sz - w]

This problem has a closed-form solution:

2

Tpt1 = (ATA + pI) R A" VpT] [\ﬁ(zf— :U'k)]

(ATA+01) " (ATb+ plz — )
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The z update problem is:
minimize 7|z, + gHz T —

You may recognize this: it is the proximal operator for the ¢;-norm,
which as we have seen before has closed form solution:

Zip1 = Tryp(Tpsn + pay,),

where T)(-) is the term-by-tern soft-thresholding operator,

vn] — A, wvn] > A,
(Ta(v))[n] = {0, [oln]] < A,
vin] + A, vn] < =\,

To summarize:

ADMM iterations for the LASSO

-1
= (ATA+ 1) (AD+ plz — )

Zk+1 = TT/p(ajk—l—l + “k):
M = Mg+ Thy1 — 2yt
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Convergence properties

We will state one convergence result. If the following two conditions

hold:

1. f and g are closed, proper, and convex (i.e., their epigraphs are
nonempty closed convex sets),

2. strong duality holds,
then

o Ax, + Bz, — c — 0 as £ — oo. That is, the primal iterates
are asymptotically feasible.

o f(xy) + g(zr) — flx) + g(x*) as k — oo. That is, the
value of the objective function approaches the optimal value
asymptotically.

o v, — V" as k — oo, where v* is a dual optimal point.
Under additional assumptions, we can also have convergence to a

primal optimal point, (x, z;) — (x*, 2*) as k — 0.

See | , Section 3.2] for further discussion and references.
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Convex constraints

Using a technique that we have seen before, we can write the general
program

minimize f(),
where C is a closed convex set, in ADMM form as

minimize f(x) +g(z) subjectto x— 2z =0,
zeR

where g(z) is the indicator function for C:

(2) = 0, =ze€eC,
NE= 0o, z ¢C.

Note that in this case, the z update is a closest-point-to-a-convex-set
problem. For fixed v € RY:

argmin g(z)+ gHz — |3 = argmin ||z — v|y = Pe(v).
z zeC

ADMM iteration for general convex constraints:

Tj11 = argmin (f(a:) + gHw — Zp + Hng) ;

xr

Zie1 = Pe (T + 1)
Mipir = By + Thp1 — 2yt

Of course, this algorithm is most attractive when we have a fast
method for computing Pe(+).
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Example: Basis Pursuit
As we have seen before, a good proxy for finding the sparsest solution
to an underdetermined system of equations Ax = b is to solve

minimize ||&||; subject to Ax =b.

To put this in ADMM form, we are solving

minimize f(x)+ g(z) subject to x —z =0,

T,z

with
0, Az=0b,
o0, otherwise.

f(x) =||x|;, and g(z)= {

The projection onto C = {x : Ax = b} can be given in closed form
using the pseudo-inverse ¢ of A as
Pe(v) = A'(b— Av) +v
—I-A"(AAHY"A)v+ A" (AAY b,
where the last equality comes from A" = AT(AA™)~" when A has
full row rank.
The updates in this case are

X = arg min (HmHl + gHCL' — 2z + uﬂ!%)

= Thyp(2z1 — 1)
zp = (I— A AAY) A (@ + ) + AT(AAT) D

M = By + Tpp1 — Zpgt
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Example: Linear programming

Consider the general linear program

minimize e¢'x subject to Ax =b, = >0,

T

where A is an M x N matrix with full row rank.” We can put this
in ADMM form by first eliminating the equality constraints, then
introducing the indicator function for the non-negativity constraint.

Let Q be an N x (N — M) matrix whose columns span Null(A),
and let @, be any point such that Axy, = b. Then we can re-write
the LP as

minimize ¢'(xy+ Qw) subject to =+ Qw > 0,

which we can write in ADMM form as
minimize ¢'xy + c¢'Qw + g(z) subject to Qw — z = —xy,

where

o= {520

o0, otherwise.

(We can drop the ¢y from the objective since it does not depend
on either of the optimization variables.)

Notice that when @ has full column rank, the program

1
minimize v w + §HQw —yl3,
w

3The full row rank assumption is not at all essential; I am just making it to
keep things streamlined.
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has the closed-form solution
w' =(Q'Q)(Q'y —v).

Also, the projection onto the non-negative orthant C = {x : > 0}
Is

vn|, wv
0, v

Pe(v) = (v),, or (Pe(v))n] = {

> 0,
< 0.

ERE)

For the general linear program, then, the ADMM iterations are

1 1
Wy = argmin (; c'Qu + équ — Zpt Ty + Mk”g)

_ 1
- (@@ Q" @~ )~ Q"]
Zi = Pe(Qwigy + o + py)
= (Qwjy + o+ ),
M1 = My + QWi — 244 + .

Notice that especially when the columns of Q are orthogonal, Q" Q =
I, all of these steps are very simple.
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A Primal-Dual Proximal Algorithm

We will close this section by discussion one more primal-dual algo-
rithm that is related to, but not the same as, ADMM. It is inspired
by solving unconstrained problems of the form

minigﬂze f(Kx)+ g(x), (1)
xeRN
where K is a M x N matrix, and f and g are convex (but generally

not smooth or even differentiable) convex functions. The “primal-
dual” part comes from the way we will decompose this problem.

We looked at problems of a form similar to (1) when we talked about
proximal gradient algorithms. There we saw that if f was differ-
entiable and we had a good way to compute the prox operator for
g, then we take a gradient step on f(Kx) (using the chain rule to
account for the K) and then a prox step on g. The algorithm we
consider here applies when f is not differentiable (and g might be
smooth or not). In fact, recent work on this problem was in part
inspired by a common problem in image restoration, where we solve

L 0 )
minimize [ Dl + [ly — Az, 2)
where D is an approximate derivative operator. The idea is that
we are given some kind of indirect measurements y ~ Ax and we
want to find @ that is consistent with these measurements and whose
derivative is “sparse”. Here is an example from | J:
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Fig. 8 Motion deblurring using
total variation regularization. (a)
and (b) show the 400 x 470
clean image and a degraded
version containing motion blur
of approximately 30 pixels and
Gaussian noise of standard
deviation o = 0.01. (¢) is the
result of standard Wiener
filtering. (d) is the result of the
total variation based
deconvolution method. Note
that the TV-based method yields
visually much more appealing
results

(a) Original image (b) Degraded image

A

(c) Wiener filter (d) TV-deconvolution

The tricky thing about solving (2) is the D in the non-smooth part
of the functional; we do not have a good prox operator for || Dzx]||;.
We have seen that the prox operator for the £; norm

| 1 )
argmin | [lzfl + o~z — ulf;

can be solved using soft thresholding, but the prox operator

: 1
g (| Dy + 5@~ ul?)

does not have an easy solution.

To account for the matrix K in (1), we turn again to the Fenchel
conjugate. If f is convex (and has a closed epigraph) then we can
write

f(Kx) = SUp (V' Kz — f*(v)).
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We can then recast (1) as

minimize max yTKCB +g(x) — (V). (3)

Zr 14

N~

o(z,v)

As ¢ is convex in & and concave in v, this is a saddle point
problem. We are trying to maximize (over ) the function v* Ka—
f*(v) while minimizing (over @) the function g(x) + v' K. The
bilinear form v* K is what is tying these problems together.

We can solve it by alternating proximal gradient steps on the first
and second variables of ¢, first descending on f*(u) — v Kx (which
is the same as ascending on v' K« — f*(v)), then descending on
g(x) + v ' K. From a starting point @y, vy, we iterate

Vi1 = ProX, . (v + o Kaxy)

T
T = ProxX,,(Tr — oK Vi)

The o above is the dual stepsize, while the « is the primal stepsize.
This is called the Arrow-Hurwicz algorithm | ], and it is known
(under appropriate choices of o, ) to find a saddle point (x*, v*) of
(3) (and so &* will solve (1)).

Note that the algorithm above involves the prox operators of f* and
g; this algorithm is of course most attractive when these operators
can be computed efficiently. We will note that the prox operator for
f* is always as easy to compute as the prox operator of f, as

z = prox,;(z) + aprox,(2/a),

for any convex f and any a > 0. This is known as the Moreau
decomposition; a proof can be found in | , Chapter 6.6].
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There are all kinds of ways that this classic iteration can be enhanced.
In a well-known paper | ], a detailed convergence analysis was
given with a slight variation:

Vi1 = ProX, (v, + o Kxy)
/ L T
T = Prox,, (T, — oK vi)

o / /
Tyt = Tpyy + 0(X) g — ).

The value of 6 adds momentum to the primal variable, and in theory
the convergence guarantees are nicest for 6 = 1. (Note that 6 = 0
reproduces the first algorithm above.) In practice, though, sometimes
6 = 0 works just as well if not better than # = 1 (or something
else). Also in | ], the introduce (and analyze) other acceleration
techniques similar in nature to accelerated proximal gradient.

Exercise: Write down, in closed form, each part of the iteration for
solving (2).
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Exercise: Write down the ADMM iteration for solving (2) with
z = Da and compare with the above.
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The spectral and nuclear norms

Let’s take a closer look at the nuclear norm and spectral (operator
norm) for matrices and the associated operators for optimization.

First, recall the standard inner produce on the space of M x N
matrices

M N
(X,Y) Z Z XonYomn = trace(Y ' X).

m=1 n=1

The induced norm (called the ‘Frobenius norm’) is

IX 5 = (X, X) ZZ\an\2

m=1 n=1

Here are some basic facts that you can prove at home that we will
use repeatedly below. Let X and Y are M x N matrices. If A is a
M x M matrix, then

(AX,Y)=(X,A"Y).
And if B is an N x N matrix, then
(XB,Y)=(X,YB").

Now let U be a matrix with M rows and columns that are orthonor-
mal, i.e. U'U = I. Then the above implies

U XI5 = [ X17-

Similarly, if V' is a matrix with N rows and columns that are or-
thonormal (V'V = 1), then

IXVIE =1 X5
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It is now easy to show that || X||% is also the sum of the squared
singular values of X. Let X = UXV" be the singular value de-
composition (SVD) of X; U is a M x R matrix with orthonormal
columns, V is an N X R matrix with orthonormal coliumns, and 33

is an R X R matrix with oy > 09 > - -+ > or > 0 along its diagonal
(where R is the rank of X'). Then

R
| X5 = UV = [Z]5 = >_ o7,

1=1

The Frobenius norm is analogous to the Euclidean norm in two dif-
ferent ways: it is the sum of the squares of the entries in X and also
the sum of the squares of the singular values. The spectral norm (or
operator norm) is the maximum (¢,,) norm of the singular values

| X || = max || X vl = oy.

[vlla<1

(This matrix norm is so fundamental, that usually it is just presented
without subscript or additional notation.)

The nuclear norm is the sum (¢; norm) of the singular values

R
1 Xl =) 00
r=1

As we will see below, the nuclear norm is the dual norm to the
spectral norm, so often times it is written simply as || X, in the
literature.

As || ]| is an induced norm, it obeys the Cauchy-Schwarz inequality,
L.e.

(XY < (1 Xle - [[Y ]|,
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with equality if and only if Y = a X for some scalar .. For matrices,
there is actually a refined version of Cauchy-Schwarz, called the Fan
inequality or the von Neumann inequality depending on who you
are talking to. If oy > 09 > .-+ > op be the singular values of
X and v, > 7 > +-+ > g be the singular values of Y (just let
R = min(M, N) and set any singular values past the rank of X or
Y equal to zero). Then

R
(X.Y) <D o,

r=1

with equality if and only if X and Y have the same singular vectors
corresponding to the singular values in order. We will not prove this
here; see | | for a proof'. Note that we call this a refinement
because it gives us something in the middle of the stand Cauchy-
Schwarz inequality, viz

R R 1/2 R 1/2
(X, Y)| <D o < (Z 03) (Zvﬁ) = (| XT[r[[Y |-
r=1 r=1 r=1

'A pdf can be found here: https://link.springer.com/content/pdf/
10.1007/BF01647331.pdf.
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Exercise: Let X be an arbitrary M x N matrix with SVD X, =
UXV"'. Show that the closest point problem

minimize || Xo—Y||r
IY(l<r

is solved by X =UXVT, where

. T, 0, >T
O-T p—
Opy O ST

(The {o,} are the singular values of X along the diagonal of ¥ while

the {6, } are the singular values of X along the diagonal of 3.) You
can do this by showing

(Xo— X, Y —X)<0, forall Y] <.
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Exercise: Show that the nuclear norm is the dual norm to the
spectral norm. That is, show that for any M x N matrix X,

| X ||in = sup (X,Y).

1Y|I<1
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Exercise: Find a simple expression for the prox operator for || - |-
That is, find a closed form solution to

, 1
pros .., 2) = asgn (11 + 51X~ 212 )

One way to approach this is by invoking the Moreau decomposition:
for a convex function f(a) with Fenchel conjugate f*, we have the
identity

T = Prox, () + o prox, (/).

You have already computed the prox operator for f* in this case ...
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Exercise: Suppose we observe entries (m,n) € Z of a matrix X
that we expect is low rank. Call these observations Y,,,, (again for
(m,n) € ). We will attempt to recover the matrix by solving the
“matrix LASSO”

L 2
minimize ( Z)EI (Yoo — Xonn)” + M| X nn-

Write down a proximal-gradient algorithm for solving this problem.
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Bonus Exercise: Show that the subdifferential of the nuclear norm
for M x N matrices at a point X = UX V' is given by

| X || =UV"+W,
for all M x N matrices W that obey;,

UW=0 WV=0 |W|<L
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Bonus Exercise: Let X be an arbitrary N X N matrix. Find a
closed form expression for projecting X onto the semidefinite cone.
That is, solve

minimize || X, — Y|z
Y0
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IV.A Further Topics:
Convex Relaxation
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Convex relaxation

The art and science of convexr relazation revolves around taking a
non-convex problem that you want to solve, and replacing it with
a convex problem which you can actually solve — the solution to
the convex program gives information about (usually a lower bound)
the solution to the original program. Usually this is done by either
“convexifying” the constraints or convexifying the functional — we
will see examples of both below.

Minimum-Cut

Suppose that we have a directed graph with vertices indexed by
1,...,N. By convention we will denote vertex 1 as the “source” and
vertex N as the “sink”. Between each pair of vertices (i, j) there is a
capacity C; ; > 0 — if there is no edge from ¢ to j, we take C; ; = 0.
A cut partitions the vertices into two sets: a & which contains the
source, and a set §¢ which contains the sink. The capacity of the cut
is the sum of the capacities of all the edges that originate in S and
terminate in S¢.

In example below, we have N =6 and S = {1,2,4,5}:

1
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The capacity of this cut is24+3+2=17.

In general, the capacity associated with a cut S is
> Cij:
i€S,j¢S
If we take the vector v € RY as

L 1, ©1€S8,
"0, i¢S

then we can write the problem of finding the minimum cut as

N N

minimize Z Z C;jmax(v; — v;,0)
i=1 j=1

subject to v; € {0,1}, i=1,..., N,
Vy = 1, Vny = 0.

To make the objective function simpler, we introduce A, ;, and the
minimum cut program can be rewritten as

N N
(MINCUT) - minimize ;;Ai,jci,j
=1 j=
subject to A\, ; = max(v; — v;,0), i,7=1,...
V; € {0,1}, 1= 1,...,N,
=1, vy=0.

N

) ?

We will not do so here, but one reason why the minimum-cut problem
is of interest is that its dual is the mazimum-flow problem (i.e., given
a directed graph and capacity constraints, what is the largest flow
possible from the source to the sink).

2
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As it is stated, there are two things making this program nonconvex
— we have non-affine equality constraints relating \; ; to v; and v;,
and we have binary constraints on v;. If we simply drop the integer
constraint, and relax

)\i,j = maX(l/Z' — U O) to )\ZJ 2 Vi —Vj and )\ZJ Z 0,
we are left with the linear program

(LP-R) minimize (A, C)

Av
subject to A\, ; > v, —v;, A; >0, 0,5=1,..., N,
vV = 1, Vny = 0.

Note that the domain we are optimizing over in the LP relaxation is
larger than the domain in the original formulation — this means that
every valid cut (feasible A, v for the original program) is feasible in
the LP relaxation. So at the very least we know that

LP-R* < MINCUT™,

But the semi-amazing thing is that the solutions to the two programs
turn out to agree.

We show this by establishing that for every solution of the relaxation,
there is at least one cut with value less than or equal to LP-R*. We
do this by generating a random cut (with the associated probabilities
carefully chosen) and show that in expectation, it is less than LP-R”.

Let Z be a uniform random variable on [0, 1]. Let A*, v* be solutions
to (LP-R). Create a cut S with the rule:

if vy > Z, then taken € S.

3
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The probability that a particular edge ¢ — 7 is in this cut is

P(i€SjgS) =P(vy<Z2<y)
< max(v; — v}, 0)
<A

where the last inequality follows simply from the constraints in (LP-
R). This cut is random, so its capacity is a random variable, and its
expectation 1s

E[capacity(S)] = Z Ci;P1eS,j&S)

5J

<> CiX;
1,]

— LP-R*.

Thus there must be a cut whose capacity is at most LP-R*. This
establishes that
MINCUT* < LP-R”.

Of course, combining this with the result above means than

MINCUT* = LP-R”.

This is an example of a wonderful situation where convex relaxation
costs us nothing, but makes solving the program computationally
tractable.

4
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Maximum-cut

A good resource for this section and the next is Ben-Tal and Ne-
mirovski [BTNO1].

This problem has a very similar setup as the minimum-cut problem,
but it is different in subtle ways. We are given a graph; this time
the edges are undirected, and have positive weights A; ; associated
with them. Since the graph is undirected, A;; = A;,; and so A is
symmetric. We will also assume that A;; = 0 for all 4.

As before, a cut partitions the vertices into two sets, S and §¢— these
sets can be arbitrary; there is no notion of source and sink here. For
example, the cut in this example:

has value cut(S) = Asy + Azs. The problem is to find the cut
that maximizes the weights of the edges going between the two
partitions.

We can specify a cut of the graph with a binary valued vector x of
length N, where each x, € {—1,1}. We set x, = 1 if vertex n is in

5
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S and z,, = —1 if vertex n is in §¢. The value of the cut is

cut(S ZZAJ — T,%;).

lel

Note that if x; # x;, then (1 — z;x;) = 2, while if x; = x;, then
(1 — @;x;) = 0. The factor of 1/4 in front comes from the fact that
(1 — x;x;) = 2 for edges in the cut, and that we are counting every
edge twice (from 7 to j and again from j to ). Notice that we can
write this value as a quadratic function of a:

cut(S) = i (1'A1 —z'Ax)

The maximum-cut problem is find the cut with the largest value:

1 1
(MAXCUT) maximize EITAl — ZL:BTAw

reRN

subject to x; € {—1,1}.

Right now, this looks pretty gnarly, as A has no guarantee of being
PSD, and we have integer constraints on . We can address the first
concern by re-writing this as a search for a matrix X = xx!. As

now' ' Ax = (X, A), we have
1 1
maximize -1'A1 —~(X, A)

X eRNxN 4 4
subject to X >~ 0

Xi,izl, ’L:l,,N
rank(X) = 1.

'Recall that the standard inner product between two M x N matrices is
(X, A) =3 Ann X = trace(A" X). This is exactly the same as
“flattening out” the matrices as vectors and using the standard Euclidean
inner product.

6
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You should be able to convince yourself that X is feasible above if
and only if it can be written as X = xx®, where the entries of x
are 1.

The recast program looks like a semidefinite program (SDP), except
for the rank constraint. The relaxation, then, is to simply drop it
and solve

1 1
(MAXCUT-R) maximize -1'A1 — ~(X, A)

X eRNxN 4 4
subject to X >0

Xi’izl, Zzl,,N

As we are optimizing over a larger set, the optimal value of MAXCUT-
R will in general be larger than MAXCUT:

MAXCUT-R* > MAXCUT™.

But there is a classic result | ] that shows it will not be too
much larger:

MAXCUT* > (0.87856) - MAXCUT-R".

The argument again relies on looking at the expected value of a

random cut. Let X™ be a solution to MAXCUT-R. Since X is
PSD, it can be factored as

X" =Vv'v.

With v; as the j* column of V', this means X, = (v;,v;). Since
along the diagonal we have X;; = 1, this means that ||v;||; = 1 as
well. We can associate one column v; with each vertex in the original

7
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problem. To create the cut, we draw a vector z from the unit-sphere
(so ||z||> = 1) uniformly at random,* and set

S={i : (v;,z) >0}

[t should be clear that the probability that any fixed vertex is in S
is 1/2. But what is the probability that vertex ¢ and vertex j are
on different sides? The probability of this is simply the ratio of the
angle between v; and v; to m:

arccos(v;,v;)  arccos X7,

PleS,jgS8)+P(igS,jes) = _

m v

Thus the expectation of the cut value is

E[cut(S ZZAH (1e€8,j¢8)+P(igS,j€S8))

21]1

:iiAw

i=1 j=1

arccos X *

There must be at least one cut that has a value greater than or equal
to the mean, so we know that

MAXCUT > Elcut(S)).

Let’s compare the terms in this sum to those in the objection function
for MAXCUT-R. We know that the entries in X ™ have at most unit
magnitude’ —1 < X7, <1, and it is a fact that:

arccost
2T

?In practice, you could do this by drawing each entry Normal(0, 1) indepen-
dently, then normalizing.
*This follows from X7, = (v;, vy), |lvs]|2 = 1, and Cauchy-Swartz.

> (0.87856)1(1 —t), for te|—1,1].
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Here is a little “proof by plot” of this fact:

0.5

0.451

0.4

0.35F

0.3F

0.25

0.2

0.15¢

0.1r

0.05

0 1 1 1
-1 -0.5 0 0.5 1

t
blue = 20t rod = (0.878856)%(1 — ).

=

Thus
MAXCUT* > E[cut(S ]

X*
_ Z Z AZ Pk arccos

=1 j=1

(0.87856) ZZ Lasi-x )

’Ll]l

= (0.87856) - MAXCUT-R*
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Quadratic equality constraints

The integer constraint x; € {—1, 1} in the example above might also
be interpreted as a quadratic equality constraint:
v, €{-1,1} & a2 =1

As we are well aware, quadratic (or any other nonlinear) equality
constraints make the feasibility region nonconvex.

We consider general nonconvex quadratic programs of the form

minimize x' Ay + 2(x, by) + ¢y
zeR

subject to ' A,z +2(x,b,,) +¢c, =0, m=1,..., M,

where the A,, are symmetric, but not necessarily = 0. We will
show how to recast these problems as optimization over the SDP
cone with an additional (nonconvex) rank constraint. Then we will
have a natural convex relaxation by dropping the rank constraint.
This general methodology works for equality or (possibly nonconvex)
inequality constraints, but for the sake of simplicity, we will just look
at equality constraints.

We can turn a quadratic form into a trace inner product with a rank
1 matrix as follows. It is clear that

bl ¢

— trace (lzﬁ’ lc’] Xx), X, = m 27 1].

" Az +2b'x +c= [z 1] [A b] [w]

10
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This means we can write the nonconvex quadratic program as

minimize trace ([AO bO] X x)

T
RN bo Co

subject to  trace ([?{n bm] Xx> =0, m=1,...,M.
With A b
P[5 o)

we see that this program is equivalent to

minimize (X, F)

XERNXN

subject to (X, F,)=0, m=1,...,M
X >0
rank(X) = 1.

Again, we can get a convex relaxation simply by dropping the rank
constraint. How well this works depends on the particulars of the
problem. There are certain situations where it is exact; one of these
is when there is a single non-convex inequality constraint.There are
other situations where it is not exact but is provably good — one
example is maximum-cut. There are other situations where it is

arbitrarily bad.

11
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Example: Phase retrieval

In coherent imaging applications, a not uncommon problem is to re-
construct an unknown vector & from measurements of the magnitude
of a series of linear functionals. We observe

Ym = \<$,0m>\2 (+ noise), m=1,..., M.

For instance, if a,, are Fourier vectors, we are observing samples of
the magnitude of the Fourier transform of x. If we also measured the
phase, then recovering @ is a standard linear inverse problem (and
if we have a complete set of samples in the Fourier domain, you can
just take an inverse Fourier transform). But since we do not get to
see the phase, we have to estimate it along with the underlying @ —
this problem is often referred to as phase retrieval.

We can rewrite the measurements as

Y = (A, T){T, a,,) = x"a,al z = trace(a,a’ zz")

— <X7 Am>F7

where A,, = a,,all and X = xza". So solving the phase retrieval
problem is the same as finding an N X N matrix with the following
properties:

(X, ADF=Ym, m=1,....M, X =0, rank(X)=1.

The first condition is just that X obeys a certain set of linear equality
constraints; the second is that X is in the SDP cone; the third is a
nonconvex constraint.

One convex relaxation for this problem simply drops the rank con-
straint and finds a feasible point that obeys the first two conditions.
Under certain conditions on the a,,, there will only be one point in
this intersection once M is mildly larger than N.

12
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Example: Maximum Likelihood MIMO decoding

In MIMO (multiple input multiple output) digital communications,
we have N transmit antennas and M receive antennas. Each trans-
mit antenna sends a bit (41), which are collected together into an
N-vector .

The receive antennas observe
y=Hx + v,

where H is a known M x N fading matrix (or channel matrix), and
v ~ Normal(0, o°I).

1. The mazimum likelihood decoder finds the binary valued vec-
tor « that makes the observations y most likely:

Ty, = argmax p(y|x).
xe{-1,1}V

Show how this can be written as a least-squares problem with
integer constraints.

2. Show how the optimization program above can be relaxed into
a semidefinite program.

13
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Sparse solutions to linear systems of equations

Many, many problems in scientific computing and data science amount
to solving a linear system of equations. That is, given an M x N
matrix A and a response vector y € R¥, we want to find £ € RY
such that

Ax ~ y.

The applications here are too numerous to list, but we will settle for
kernel regression in machine learning and statistics, medical imag-
ing, seismic exploration, radar, and channel estimation in wireless
communications.

As we have seen continuously throughout this course, the starting
point for this problem is the least-squares optimization program

minimize [ly — Az

In some sense, this will return the & that come closest to explaining
Y.

There can, however, be many solutions to the least-squares program
above. This is certainly true when A is under determined, that is it
has fewer rows than it has columns. We now need to choose between
these solutions.

One criteria we can use is to choose the @ that has the smallest num-
ber of non-zero terms, i.e. is the “sparsest”. This has appeal across
many of the applications listed above. For example, in regression we
might want to choose the smallest number of features that explain
the response. In imaging, we can often express a target as a sparse
superposition of pre-determined basis functions (indeed, this is the
main idea behind every image or video compression algorithm).

14
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We might modify the least-square problem by introducing a sparsity
constraint

minimize ||y — Azx|; subject to nnz(x) < S,
zcR

where nnz(-) returns the number of non-zero terms, or by introducing
a penalty (or regularizer) which is basically putting the above in
Lagrange form,

minimize ||y — Az|]3 + X - nnz(x),
xeRN

It should be clear that nnz(-) is not a convex function, and indeed
both of the programs above have been shown to be NP-hard | J.

There is, however, a natural convex relaxation to the above. In place
of nnz(+), we use the ¢; norm. We replace the above with

minimize ||y — Az|j5 + \||z.

xeRN
The above is called the ‘LASSO’ | ] in statistics and ‘basis pur-
suit” | ] in signal processing. Roughly speaking, this relaxation

works since signals that are sparse (have a small number of nonzero
terms) have small /; norm relative to their Euclidean norm.

There is a rich theory for using ¢; norm minimization for solving
systems of equations. One typical result is that for “generic” M x N
matrices A and an observation y = Ax*, then the solution to

minimize ||x||; subject to Az =1y,
xRN

will be exactly * when M is on the order of non-zero terms, even
when M < N | : : ]. Hence we can invert
under determined systems even when the solutions are indeed sparse.

Throughout this course, we have seen many algorithms for solving
these types of problems.

15
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Low rank matrix recovery

Consider the following fundamental, easily stated problem. Suppose
there is a M x N matrix

whose entries we only partially observe,

X1 — X3 — Xis
— Xoo — Xoy4 —

[s it possible to “fill in the blanks”?

Of course, in general the answer is “no”. But what if the matrix is
structured in that it has rank R < min(M, N)? Then the answer
(under some conditions on the underlying matrix) is “yes”. Revealing
just a few entries per row/column makes the problem identifiable:
there is only one low rank matrix that can have exactly those entries.
This matrix can be recovered (the entries “filed in”) by solving

minimize rank(X) subject to X, = Yo, (m,n)eZ,

where 7 is the set of observed indices, and Y,,,, are their observed
values.

16
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This is again an NP-hard problem. But also again there is a natural
convex relaxation (first made popular in | ]), we replace rank
with the nuclear norm:

minimize | X || subject to X, = Yo, (m,n) €.

The nuclear norm || X||,, is the sum of the singular values of X.
This is actually the dual norm of the standard matrix operator norm
(maximum singular value). Note the parallels to the vector case: we
relax the number of non-zero singular values (the rank) to the sum,
just as we relaxed the number of non-zero entries in a vector to the
sum of the absolute values. Also, just as the ¢; norm is dual to the
(, norm, the nuclear norm (sum of singular values) is dual to the
operator norm (maximum of singular values).

There is also a rich theory for recovering low-rank matrices from
partial observations; seminal works include | : ], and a
review can be found in | J.
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IV.B Further Topics:
Distributed Optimization
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In this section we will discuss different methods for taking a large
optimization program and breaking into smaller ones. These smaller
problems are distributed to different “agents”, each of which has a
computational core that can “work” on the smaller problem. As the
smaller problems are in general linked together, the agents have to
coordinate in some manner so that they work towards the solution
of the original problem.

We will look at two types of coordination models. In the centralized
setting, there is a central node that the agents coordinate through. In
the decentralized setting, the nodes communication with one another
on a predefined network. These two communication models can be
captured using graphical models as shown below.

7 U

centralized coordinator decentralized network

The optimization problems we look at will also be structured (in one
of two different ways). The general form of the problems we consider
1s
minimize f(x) + g(x),
xzeRN

where f and g are convex functions. In addition we will assume that
either f or g have some type of separable structure. This assumed
structure, however, is prevalent in supervised learning,.

1
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A typical problem in supervised learning is to find a linear combi-
nation of a features of observed data points that can come close to
matching the responses in a vector b. The N features for each of M
data points are arranged in an M x N matrix A. We are interested
in solving problem of the form

minimize Loss(Ax —b) + Regularizer(x)

€T A\ s

f(x) 9(x)

Notice that
Loss(-) : R™ — R, and Regularizer(-) : RY — R.

We will assume that one or both of these functions are separable, at
least at the block level. This means we can write

f(x) = Loss(Ax — ZE b)) = Zfi(a:),

or

g(x) = Regularizer(x) = Z ’I“Z'(:B(i)),

where the ¥ € R™ partition the vector . These two types of
separability will allow us to divide up the optimization in two different
ways.

We start by looking at some examples of where we can perform this
decomposition.

2
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Example: Inverse Problems and Regression

Two popular methods for solving linear inverse problems and/or cal-
culating regressors are solving

1
minimize éHAm — b5 + 7|5,
xr

(Tikhonov reqularization or ridge regression), and

1
minimize §||A:c — b3+ 7|z,
£

(the LASSO).

These both clearly fit both the separability criteria, as

M

| Az —bll3 = > (a,z — blm])*,

m=1
N

|z = > _(x[n])?

n=1
N

e}y =) |[n]].
n=1

where a} is the m™ row of A. We have a lot of flexibility in this
situation, as we can partition the rows of A or the entries in & an
way we want — if we have access to B agents, it makes sense divide
them into B sets of equal size. We could take, for example

B B
f(z)=|Az —bl; =) Az - b"|3 =) fi(z)
i=1 i=1

3
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Example: Support Vector Machines

Previously, we saw how if we are given a set of M training examples
(1, Y ), where x,, € RY and g, € {—1, 1}, we can find a maximum
margin linear classifier by solving

1
min §H’wH§ subject to Y (b—(x,, w))+1 <0, m=1,..., M.
With the classifier trained (optimal solution w*, b* computed), we
can assign a label ¢ to a new point &’ using

y' = sign({z’, w*) + b").

Instead of enforcing the constraints above strictly, we can allow some
errors by penalizing mis-classifications on the training data appro-
priately. One reasonable way to do this is make the loss zero if
Ym(b — (2, w)) +1 < 0, and then have it increase linearly as this
quantity exceeds zero. That is, we solve

M
- 1
min (Y (b — (2, w)) + 1) + 5”“’”37

w.b
m=1

where £(+) is
0, u <0,
w, u > 0.

£(u) = (u), = {

This is penalty is often called the hinge loss. Note that the argu-
ment for £(-) is an affine function of the optimization variables:

Yl = (T w)) + 1= [ =Yy, Y] rg’] + 1.

Both the loss function and regularizer in this formulation of the SVM
are clearly separable.

4
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ADMM: Splitting across examples

In this section', we will see how we can use ADMM to solve problems
of the form

minimize Z fi(x (x) (1)

RN

using B agents with a centrahzed coordinator. In the context of
supervised learning, this framework is useful when we have “many
measurements of a small vector” or “large volumes of low-dimensional
data”. We can use it when

f(x) = Loss(Ax — Z€ ) = Zfi(a:),

F A0 )
) )

Ao AT b
AB) b(B)

We start by splitting the optimization in (1) variables in f and g,
arriving at the equivalent (now constrained) program

minimize Z file) + g(z) subject to x —z=0.

We do not yet have this in a form we can distribute, as all of the f;
are tied together by working on the same argument . The trick is

'A good resource for the material in the next two sections of the notes is

[ J

D
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to introduce B different vectors ¥ € RY, one for each agent, and
then use the constraints to make them all agree. This results in the
equivalent problem

minimize Z fi(xD) + g(2)
subject to £ — 2z =0, i=1,...,B.

The augmented Lagrangian for this last problem is now separable
and can be expressed as

B
‘Cp(mu)a Tt 7m(B)7 Z, u'<1)7 Tty l’l’(B)> — Z [’Z(w(l)a Z, l’l’(Z))a

1=1

i i i g(z) p ; i
Li(x"z, p) = fi(z") + 5 inL’() —z+p"|;3

and the p' are the (rescaled) Lagrange multipliers for the constraint
() — 5 —0
x z :

As the Lagrangian is separable over the B blocks, each of the primal
updates for the a; can be performed independently. The ADMM
iteration amounts to

x\), = arg min (fi(ar:(i)) + 22 — 2, + u,@H%) , 1=1,...,B

()

B
: P i i
Zp4+1 = argmin (g(z) + 2 Z |z — wéu)d - l’l’l(f)Hg)
i=1

z

Hl@rl = Nl(;) + ml(cZJ)rl — Rkt1

6
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The z update can be simplified by writing it in terms of the average
of the ), and the p{”. To see how this works note that

B B N
> llz = will3 = Bll=|); -2 <z, Z'Ui> + > llvill3
=1 1=1 1=1 N
= B||z|l; — 2B (z,v) + Bvll; + (—BHU\% + HwH%)

1=1

N
= Bz — v|; + (—BH’UHS + HM\%) -
i=1

where v = £ 3°7  v;. Thus
arg min <g<z> +52 Il —al - u§;>||§)
o i=1

. Bp _ _
= arg min (g(z) -+ 7\\2 — Lpy1 — ll'k”g)

z

Distributed ADMM (splitting across data)

a:,(ﬁl — arg min (fz(a:(z)) + gHw(i) — 2z + u?H%) ., 1=1,....B

200
. B _ ~
Zp+1 = argmin (9(2) + 7PHZ — Lpy1 — :U'ng)

l’l’](gzj—l :H](CZ)+mIE:Z_)|_1_Zk+1, /l/: 1,...7B7

where

1 & 1 EL
Tr1 = 5 > ol = B > .

7
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The high-level architecture is that B separate agents solve indepen-
dent optimization programs for the B ¥ updates. These are col-
lected by the coordinator and averaged, and then the coordinator
solves a single optimization program to get the z update. The new
z is then communicated back to each of the B units. The Lagrange
multiplier update can then be easily computed by the agents before
proceeding again to the ' updates.

Example: The LASSO
(Homework ...)

Example: SVMs

For the SVM, we collect the weights and the offset into a single
optimization vector

T — [w] c RN+

b
and set .
—Whey U
A — . .
—YmTy Yur-

If we partition the data (A) into B blocks (A", ..., A®)) then we
can express the ¢ component of the augmented Lagrangian as

. . N z . .
£ 2 0 = 17400 1 1)+ SE 0 oy

Note that the regularization does not include the last term in z:
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This results in the ADMM iteration

)], = arg min <1T(A(i)ac<i> +1), + g”w(i) — 2+ N;@HS) |

m(z)

B s —
Zpln] = g, (@ra[n] + pyln]), n=1,... N,
j/{:—l—l[n] + ﬂk[n], n = N + 1,
N§<:21 = H;(gi) + ajgl — Zji1.

ADMM: Splitting across features

When we are solving problems of the form

minimize f(Ax) + g(x),

RN

where g is separable, which we are in all the examples above, we can
also distribute the optimization program (again with a centralized
coordinator) by dividing up the columns of A. In learning this is
often referred to as “splitting across features” as each agent will see
a subset of the features for all of the data points.

If we can separate g into B blocks,
B .
g(@) =) g
i=1

where £ € RY then we can do the same with the matrix product
Ax. We divide the M x N matrix A into B blocks with dimensions
M x Ni;

A — {Am AD ... A(B)}

9
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and then .
Ax = Z Al
i=1

Our optimization problem is now

B
mmlmlze (Z AV ) + Z gi(z"
i=1

1=

which we can recast as

mn)nmlze (Z Z; > +Z gi(x subject to AVg — 20 = 0.
{z0},{z
This gives us the ADMM updates
o, = arg min (9 + 51400 - =+ u|2)
xRN

: i P i) (i i i
S—— <f (Zz<>>+§z\A<>w;11_z<>+u;>ug>
i=1

z= {z(‘)}eRBM
(i) (i)
M = "’ AY wk+1 — 2kt

The z; update, which is an optimization problem over BM variables,
can actually be derived from an optimization over N variables: we

can solve for the mean z;,; then recover the individual z,(fll from
the mean. Indeed, if for any z € RPM we let

L0
= pL*

then we can write (using the chain rule) the optimality condition for
the optimization program for the z update above as

0 € BAf(Bz) + p(z" — ADz") — pu\"), forall i=1,...,B.

10
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Averaging over these B conditions, we also know that

0 € BOf(Bz)+ p(z —b),
where

s LS 00 (i

b:E;<A Tpp1 T My )

Thus is must be the case that

p(z —b) = p(z" — AV — u) " forall i=1,..

or in other words for the optimal z, we will have
20—z —-b+ A2 +pul

Thus we can solve

B _
Zpe1 = arg min (f(Bz) + 7'0 Hfz — bH;) :

zeRM

and then update

2l =z — b+ AV, + )

‘7B7

Also note that with (2), the Lagrange multiplier update becomes

Iub;(;ll =b— Zj.1,

meaning that all B sets of Lagrange multipliers are equal to each

other.

11

Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 13:07, November 22, 2021



Distributed ADMM (splitting across features)

wﬁﬁlzargmin(gx )+ LA —z%ukllé), i=1,...B

(‘)G]RN

Bk+1 Z ( wk+1 + “’k)

B )
Zp.1 = arg min (f(Bz) = 7'0 |z — kaHZ)

zeRM
zl(fz—)i—l — 2k:—i—l - bk—H + A(Z)wg—)i—l + I, L= 17 RN B

Hii1 = bri1 — Ziy1

To make the communication explicit, one way this can work is

1. Bach agent solves for :c,(jil in parallel.

2. The quantities A<i)ar;,(€€21 + p;,,, are communicated to the coor-
dinator.

3. The coordinator computes by, and then solves the optimiza-
tion program to compute 2z, 1.

4. The coordinator updates each ZSL and the g, and commu-
nicates them back to the agents.

5. Repeat.

Note that the coordinator could also broadcast the zj,;, by, to all
of the agents, an they could update the z,(;)rl and p;,,, individually.

12
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Example: the LASSO

Suppose we want to solve

1
minimize —HA.’B —yll3+ M|l
RN \‘/_/

\ 7

f( ) g(x)

by distributing across features. In this case, the ADMM iterations
above reduce to

2, = arg min ( A Pl A0z — AV 5 1|

b1y = arg min | Alja’ HH‘ x;, — Zj + by
xRN 2

2 b

Zl = s (y + pbrs1)

M1 = b, — Zhi1

Note that in this case, each of the agents has to solve a smaller
LASSO problem at every iteration to do the £ updates.
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Decentralized Optimization

In this set of notes, we again look at solving problems of the form

B
minimize Z fi(x), (4 aregularizer, possibly)
i=1

reRN

Here, though, we will assume that the B agents, each of which has
access to one of the f;, can only communicate on a decentralized

network:

To warm up we will start by discussion one of the most fundamental
problems in network science.

Network consensus

Consider the following problem. We have B agents arranged in a
network as in the example above., each of which holds a vector .
The agents can communicated with their neighbors on the graph
above. The goal is for the agents to figure out what the average of
2 is; that is, each one want to learn

1S,
i7::z§;§;:B@X

14
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Let’s make all of the above a little more precise. The network can be
described by a graph (V, £) where the B vertices in V are in one-to-
one correspondence with the agents, and the edges £ dictate which
agents can communicate with one another. In the picture above

V=1{1,2,3,4,5,6},
E=A{(1,2),(1,4),(1,5),(2,3),(3,4), (4,5),
(2,1),(4,1),(5,1),(3,2),(4,3),(5,4)}.

Note that the graph is undirected, so (i,j) € € & (j,1) € £. We
will also use N (i) to denote the neighborhood of agent 7, that is all
other agents connected to ¢ along with 7 itself

N(i)={j: (i,7) € €y U {i}.
So again in the example above

N(1)={1,2,4,5}, N(2)={1,2,3}, etc.

You can probably think of numerous schemes that can be used to
compute the average, but here is a relatively simple way that is ex-
tremely effective and resource-lite. The agents simply take an average
of their current estimate with their neighbors’, then repeat. That is,
we take

then each agents compute

wazk, i=1,...,B, (1)

JEN(7)
where the weights w; ; obey

wa— , i=1,...,B, (2)

JEN(7)

15
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and w;; > 0. For simplicity in the exposition below, we will also
assume that w;; = w;;, although all the essentials still hold if this
is not the case. As the sum for agent ¢ in (1) involves only their
own state z,(f) and that of its neighbors, it can be executed with
communication over edges on the graph. We will see that this simple
iteration results in all of the z,(;) — & as k — co. While the rate of
convergence will depend on the structure of the graph, we will also

see that it is in general very fast.

We can write the iteration (1) as a vector-matrix product. To simplify
notation here, we will assume that N = 1, so each £ = 20 is a
scalar; nothing changes in our discussion below for N > 1 except
the notation. Collect the weights {w;;, (¢,7) € £} into the B x B

matrix W with
M/i,j _ W j, (Zvj) € 57
0, (i,j) €€
We collect the 20 = 2() € R into a vector of length B,

)
(2)
2= 17, &)
L(B)
Then (1) becomes
2+l — WZk. (4)

We have now turned this problem into one of the most fundamental
constructs in applied mathematics: a linear dynamical system. We
can learn almost all there is to know about the convergence of such
a system from the eigenstructure of W (which is in turn related to
the geometric structure of the graph).

16
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We start the convergence analysis by noting one particular fact: that
the vector 1 € R? of all ones is an eigenvector with eigenvalue 1,

Wi=1.

This follows directly from the fact that every row of W sums' to
1 as dictated by (2). A slightly less obvious fact is that all of the
eigenvalues of W must have magnitude < 1. To see this, suppose
that v is an eigenvector of W with eigenvalue A\, so Wwv = Jwv.
Then is must be true that for every ¢ =1,..., B

B

)\Ui: E ‘/‘/i,jvj
Jj=1

< mjax v,

which can only be true if |A| < 1. So we can take as the eigenvalue
decomposition W = VAV where diag(A) = {A;, \y,..., A}
with A\; = 1 and the rest of the eigenvalues sorted by magnitude,
1> ol > gl > e > Ayl

We now show that (4) will result in every entry in z; to converge to
the mean z, that is z, — 1. We have
1zr — 212 = Wz — 212
= ||[W(z)_.1 —21)|], (since W1=1)
< |Aa| ||zt — Z1||>  (see below)
< [Xof" lz0 — 15
= [Xo|" |l — 212,

where A, is the second largest magnitude eigenvalue of W. To
see why the first inequality above holds, note that %szk = x for

"Matrices like these are called row stochastic.
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all k& (the average of the state at each agent is invariant). Thus
1T(zkf1 —21) =0, and z,_; — z1 is orthogonal to the eigenvector
corresponding to the largest eigenvalue A, and the most applying W
can grow its norm is the magnitude of the second largest eigenvalue.

We can see from above that we have linear convergence when |\;| <
1. The magnitude of this eigenvalue obviously depends on the weight
matrix W both in its support structure (the locations of its non-zero
terms, as dictated by the edges £ of the graph). In fact, the quantity
1 — Xy is often referred to as the spectral gap of the graph.

[Spectral gap examples|

This all extends very naturally to the case where N > 1. Now the
vector z in (3) becomes a block vector of size BN:

The update in (1) can still be written as a matrix equation; we take

W to be the BN x BN matrix W = W ® I, where ® is the
tensor product. To create W', we simply replace each element of W

18
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with the corresponding scalar multiple of the identity. For example,

it N=B=2and

a b ~ al bl
Wz[c d]’ then W:[CI dI]:

OO O

0
a
0
c

b 0]
0 b
do|
0 d|

It should be clear that this simply means we are averaging all of
the individual elements in the z*) in exactly the same way. The
eigenstructure of W is also closely related to that of W: it has
the same B eigenvalues, but they are each repeated N times. The
convergence rate of consensus is determined by the second largest
unique eigenvalue.

Decentralized gradient algorithms

We can also use a variation on network consensus to solve optimiza-
tion programs of the form

minimize Z fi(x). (5)

As before, we will assume agent ¢ has access to the function f; and
can communicate with its neighbors AV (z) on a connected graph.

The decentralized gradient algorithm is simple: at each iteration, you
average your current state with your neighbors (as in consensus), then
take a gradient step. As before, each agent has their own version of
the decision variables ”. The main iteration, executed at each
agent simultaneously, is

a:,(fl}rl = Z wi,ngj) —apgt, i=1,...,B, (6)
JEN(4)
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where g\ € 8f;(x!”). For convex f;, and for appropriately decreas-
ing ay, the iteration (6) converges as | ]

flay) — fla) < 0(1(%).
2)

At the solution, we will have £ = x(?) = ... = 2(®) and the 2
will solve (5). This rate of convergence is essentially the same as

what we saw for the centralized case.

When each f; is L-smooth (has a Lipschitz gradient) and is p-strongly
convex, we can modify the iteration as

JeN ()

However, to get the algorithm to converge, we still need to decrease
the step size, taking o — 0 (recall that in the centralized case, we
got linear convergence for smooth and strongly convex f with a fixed
step size). The reason for this is that at the solution @, we will have
> . Vfi(x,) = 0 but not necessarily V f;(x,) = 0. Decreasing the
step size in this manner greatly hinders the convergence rate, keeping
the iteration (7) from approaching the solution at a linear rate (the
convergence rate is O(1/k*3) which is much slower that O(37%)).

Fortunately, the iteration above is easily modified for smooth and

strongly convex functions. In | ], it is shown that the iteration
wz(ﬁh = Z wi,jw,(j) - 04855)
JEN (i)
Sl(fZJ)rl = Z wi,jsg) + vfi<wl(<2—1) — vfi(wl(cZ))
JEN (i)
20
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will converge to :13,(;) — x, and s,(f) — 0 at a linear rate. Note,

however, that now we need to communicate two vectors, =¥ and
s\ between neighbors at every step.

Consensus as Optimization

Let’s return to the consensus problem and look at it from another
point of view, one that will lead us to an optimization program.
Suppose again that we have B agents who can communicate on a

graph:
()
i
O

As before, each agent is in control of a vector ». If the graph is
connected (meaning that there is a path from every node to every
other node), then the condition that all £ are equal to one another

can be rewritten as
) =29 forall (,5) € &.

For example, for the graph above
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if and only if

Another way to say this is that we have consensus (meaning (8)) if
and only if the {x¥} are a solution to the optimization program

mmlmlze Z |2 — 2|2 = Z Z |2 — D)2 (9)

= (i,5)e€ lee/\/

Obviously the solution to the above is not unique, but then neither
are the {x} that obey the equality constraints (8). We start with
an application where solving this type of is useful.

Swarm robotics

Suppose that we have B robots with positions p), p®, ... p®
where each p'¥ is a vector in RY, with N = 2 or 3, depending on the
application. Suppose that we want these robots to meet at the same
location. We do not care where this is, we simply want the robots to
all converge to the same point. We can pose this as the solution to
a convex optimization problem. Specifically, set

so that € € RYP. As above, for each robot we define a neighborhood
N (i) corresponding to the robots to which robot 4 can measure its
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relative position. In other words, if 7 € N (i), robot i can compute
the vector p) — pU). We will assume for the sake of simplicity
that these are symmetric in the sense that j € AN (i) if and only
if 1 € N(j). We would like all of these distances to be zero, so a
natural objective function that we might want to minimize is

Z > Ip" =5

1=1 jeN (i)

We can compute the gradient of this function by noting that

Voo f(x 22 )+ 22 p\)).

JEN (i) jieN(j

With our assumption that the neighborhoods are symmetric, this

simplifies to
Vo f(@) =4 Z
JEN(7)

Putting this all together, we can write

Zjej\/(l)(pg - p?;)
Vf($):4 ZjeJ\/(Q)(p _p]>

_ZjeJ\/(B) (p(B) - P(‘j))

In this case the gradient descent update x;, 1 = ®, — ,Vf(xy)
nicely de-couples so that the i™ robot has the update rule (ignoring
the multiplicative factor of 4):

pil=p) —a, Y (B —p).
JENG)
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This update rule plays a fundamental role in many swarm robotics
problems and is known as the consensus equation. Note that
the update for each robot depends only on local information (the
difference between its own position and that of its neighbors), and
hence each robot can compute its own update without any form of
global coordination.

We know from our knowledge of gradient descent that for appropri-
ately chosen g, this algorithm is guaranteed to converge. We can
also see that every global optimum of this problem will have all the
robots to converging to the same point.

Gradient descent for consensus optimization

Suppose again (temporarily) that N = 1. Then for a given graph,
the function
| | 1< | |
(2) GN2 — (2) UN2 — T
Z(w —x )—522(@" — a2V =x" Lz, (10)
(1,j)€€ i=1 jeN(i)
where L is the graph Laplacian. The graph Laplacian is constructed
from the degree matriz D and adjacency matriz A, where

1, (i,7) €€,

D;; = number of edges into node 7, A;; = {O herwi
, otherwise,

and L = D — A. For our example graph
()
(i
)
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we have

[t takes a little work to check the relation (10), and I encourage you
to put in this work at home.

The gradient decent step for solving (9) can thus be written
Lpy1 — L — OékLCC.

As noted in the swarm robotics example above, the ith component
of this gradient can be computed from knowledge of just the 2 €

N().

Although the solution to (9) is not unique, we can show that the
gradient descent algorithm will converge to a unique point that we
can specify. Notice that by construction, the vector of all ones is in
the null space of L:

L1 =0.

Thus since L is symmetric, 1* La = 0 for all =, and
1ka+1 = ].ka — Cl{k].Tka = ].T.’Bk.

That is, the sum of the entries in the @, does not change during

gradient descent. If the nodes are initialized with
_ajgl)_

o
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02000 10100 -1 2-1 0 0
D=(00200/, A=[01010, L=] 0-1 2 -1 0
00030 10101 -1 0 -1 3 -1
0000 2 10010 -1 0 0 -1 2




then gradient descent converges to a vector whose entries are all equal
to one another and whose sum is the same as @,

L )
— S .
B; 0

We see then that solving (9) using gradient descent gives us the same
answer as the network consensus iteration (1) while using the same
communication structure.

x,=x1, =

Again, for N > 1, we can solve (9) in the same way with a Laplacian

matrix that has been tensored up, L = L ® I, just as we discussed
for network consensus.

A primal-dual method for decentralized
optimization

There is another approach to decentralized optimization that is easily
adapted to f; that are not smooth. Aswe discussed in the last section,
the consensus condition (8) is equivalent to Lax = 0, meaning that

B
minitnize ZZ:; fi(x)
can be re-written as
B
Hl;ﬁl)f}%l?@% fi(x'")  subject to Lax = 0. (11)
Recall the primal-dual proximal algorithm from | | for solving

problems of the form

minimize f(Kx) + g(x),

rcRBN
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through the iteration

Vi1 = ProX, (v, + o Kxy)
/ . T
T = prox,,(z, — aK v )
/ / /
T = Ty, +0(T),, — ),

where o, o are step sizes and 6 is an acceleration parameter. We can
apply this algorithm to (11) by taking

K=L, flw)= {O’ Wl )= > fil=?

o0, otherwise,

The Fenchel conjugate of f in this case is

F(w) = sup (v"w — fw)) =0, forall v € &Y,

weRN
and so
1
prox,;.(z) = arg min (f*(w) + %Hw — z||§> = z.

Also note that

[ PIoX,, <Z§;) ]

pl”OXag(Z) _ prOXasz(z ) 7
proxafB(z(B))

and, due to the structure of L, that the matrix-vector product v =
Lx can be written as

) Lna;(;) _ zjéN 121 Lijm (4) Z]EN(l) Lljw@
vl | L@ = e ngw G Z]EN@) Ly
_I/(B)_ _LBBQ}(B) _ ZjEN(B),j#B LB]w<])_ _ZjEN(B) Lij(])_
27
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This gives us the iteration

1/,(31 = 1/,(;) +o Z Lij:c,(f), v=1,...,B
JEN (i)

wlk(i)l = prOonfi w](;) — Z Lml/gﬁl , 7, = 1, Ceey B,
JEN (i)

e, =z +0x", —x), i=1,..., B

The flow of this decentralized optimization algorithm is

L.
2.
3.
4.
D.

So just as in the centralized case, we can break down the solution
) to solving a series of subproblems in parallel. This kind of
technique is useful when the f; are expensive to compute or the

of (5

communication of {zc,(;)} between neighbors on graph

each agent updates 1/,(2rl in parallel

communication of {I/]({il} between neighbors on graph
'(4)

each agent solves a prox problem to update x, /; in parallel

each agent updates ac,(;il in parallel

knowledge of the f; is restricted to a single agent.

The convergence rate for this algorithm follows directly from the
results for the general iteration. Basically, these rates all match the
accelerated centralized results with constants that depend on the

graph structure (i.e. the spectral gap). Details can be found in |
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