
B Fenchel conjugation

Definition B.1 For a function f : Rn ! (�1, +1] the (Fenchel) conjugate function
of f is f

⇤ : Rn ! [�1, +1], given by

f
⇤(⇠) := sup

x2Rn
[⇠t

x� f(x)].

By repeating the conjugation operation one also defines the (Fenchel) biconjugate of
f , which is simply given by f

⇤⇤ := (f ⇤)⇤.

Example B.2 Consider f : R! R, given by

f(x) :=

8
<

:

x log x if x > 0,
0 if x = 0,

+1 if x < 0.

Observe that this function is convex. Then (counting 0 log 0 as 0) we clearly have
f
⇤(⇠) = supx�0 ⇠x � x log x for the conjugate. For an interior maximum in R+ (by

concavity of the function to be maximized) the necessary and su�cient condition is
⇠� log x� 1 = 0, i.e., x = exp(⇠� 1), which gives the value ⇠x�x log x = exp(⇠� 1).
Since this value is positive, we conclude that the point x = 0 stands no chance for the
maximum, i.e., the maximum is always interior, as calculated above, giving f

⇤(⇠) =
exp(⇠�1) for the conjugate function. We can also determine the biconjugate function:
by definition, f

⇤⇤(x) = sup⇠2R x⇠ � exp(⇠ � 1). If x < 0, then, by exp(⇠ � 1) ! 0
as ⇠ ! �1, the supremum value is clearly +1. Hence, f

⇤⇤(x) = +1 for x < 0.
If x > 0, then setting the derivative of the concave function ⇠ 7! x⇠ � exp(⇠ � 1)
equal to zero gives a solution (whence a global maximum) for ⇠ = log x + 1. Hence
f
⇤⇤(x) = x log x for x > 0. Finally, if x = 0, then the supremum of � exp(⇠ � 1) is

clearly the limit value 0. So f
⇤⇤(0) = 0. We conclude that f

⇤⇤ = f in this example.
The Fenchel-Moreau theorem below will support this observation.

Exercise B.1 Determine for each of the following functions f the conjugate function
f
⇤ and verify also explicitly if f = f

⇤⇤ holds.
a. f(x) = ax

2 + bx + c, a � 0,
b. f(x) = |x| + |x� 1|,
c. f(x) = x

a
/a for x � 0 and f(x) = +1 for x < 0 (here a � 1).

d. f = �B, where B is the closed unit ball in Rn.

Example B.3 Let K be a nonempty convex cone in Rn (recall that a cone (at zero)
is a set such that ↵x 2 K for every ↵ > 0 and x 2 K; cf. Definition 2.5.1 in [1]). Let
f := �K . Then

f
⇤(⇠) = sup

x2K
⇠

t
x =

⇢
0 if ⇠ 2 K

⇤,
+1 otherwise.

Recall here that K
⇤, the polar cone of K, is defined by K

⇤ := {⇠ 2 Rn : ⇠
t
x 

0 for all x 2 K}. Hence, we conclude that (�K)⇤ = �K⇤ .
Denote the closure of K by K̄. We also observe that ⇠ 2 @�K̄(0) is equivalent to

⇠
t
x  0 for all x 2 K̄, i.e., to ⇠

t
x  0 for all x 2 K, i.e., to ⇠ 2 K

⇤.
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Lecture 7: Convex Analysis and Fenchel-Moreau
Theorem

The main tools in mathematical finance are from theory of stochastic processes
because things are random. However, many objects are convex as well, e.g.
collections of probability measures or trading strategies, utility functions, risk
measures, etc.. Convex duality methods often lead to new insight, computa-
tional techniques and optimality conditions; for instance, pricing formulas for
financial instruments and characterizations of di↵erent types of no-arbitrage
conditions.

Convex sets

Let X be a real topological vector space, and X⇤ denote the topological (or
algebraic) dual of X. Throughout, we assume that subsets and functionals are
proper, i.e., ; 6= C 6= X and �1 < f 6⌘ 1.

Definition 1. Let C ⇢ X. We call C a�ne if

�x+ (1� �)y 2 C 8x, y 2 C, � 2]�1,1[,

convex if
�x+ (1� �)y 2 C 8x, y 2 C, � 2 [0, 1],

cone if
�x 2 C 8x 2 C, � 2]0,1].

Recall that a set A is called algebraic open, if the sets {t : x+ tv} are open
in R for every x, v 2 X. In particular, open sets are algebraically open.

Theorem 1. (Separating Hyperplane Theorem) Let A,B be convex subsets of

X, A (algebraic) open. Then the following are equal:

1. A and B are disjoint.

2. There exists an a�ne set {x 2 X : f(x) = c}, f 2 X⇤
, c 2 R, such that

A ⇢ {x 2 X : f(x) < c} and B ⇢ {x 2 X : f(x) � c}.

If in addition A and B are cones, we may take c = 0.

Proof. 2) =) 1) is obvious, 1) =) 2) exercise.

On a locally convex X, Separating Hyperplane Theorem gives an useful
characterization of closed convex sets:

A ⇢ X is closed and convex () A =
\

↵

{x 2 X : f↵(x) � ↵, f↵ 2 X⇤, ↵ 2 R}.

If X is also separable, then one can replace R with N above.
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Remark 1. Let X be a d-dimensional Hilbert space (d = # of base vectors).

We say that C ⇢ X is Chebyshev set if for every x 2 X there exists unique

ỹ 2 C such that ỹ = argminy2C ||x� y||. Consider the following statement:

C is Cheyshev set () C is closed and convex.

If d < 1, then it is an easy exercise to verify that the statement above is true.

However, for d = 1, this an open problem (convexity in the implication ”)”).

Lesson: Be careful when d = 1.

Convex functionals

Definition 2. We call f a�ne on X if

�f(x) + (1� �)f(y) = f(�x+ (1� �y)) 8x, y 2 X, � 2]�1,1[,

convex if

�f(x) + (1� �)f(y)  f(�x+ (1� �)y) 8x, y 2 X, � 2 [0, 1],

positively homogeneous if

f(�x) = �f(x) 8x 2 X,� 2]0,1],

sub-additive if
f(x+ y)  f(x) + f(y) 8x, y 2 X.

Remark 2. If f is convex and positively homogeneous, then f is sub-additive.

Positively homogeneous and sub-additive f is called sub-linear.

Theorem 2. (Hahn-Banach Theorem) Let Y be a subspace of X, and f linear

functional on Y . If there exists a sub-linear functional g on X such that f  g
on Y (and g continuous at 0), then there exists f̃ 2 X⇤

such that f̃ = f on Y
and f  g on X.

Proof. This is proven at the basic course of functional analysis.

Remark 3. Separating Hyperplane Theorem (SHT) and Hahn-Banach Theorem

(HBT) are equal in the following sense: If we assume that SHT is true, then

HBT is true. Conversely, if we assume that HBT is true, then SHT is true.

Convex conjugates

We make an additional assumption that X is Hausdor↵ and locally convex.

Definition 3. The epigraph of f is defined as

epi f := {(x,↵) 2 X ⇥ R : f(x)  ↵}.

If epi f is closed, we say that f is lower semicontinuous (abbreviated l.s.c.).
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Lemma 3. If f is l.s.c. and convex, then, for every x 2 X,

f(x) = sup
af

a(x),

where the supremum is taken over all continuous a�ne functionals on X.

Proof. The idea of proof: ”If a point does not belong to the epigraph, then there
is an a�ne minorant in between.”

Let (x0,↵0) 2 X ⇥ R \ epi f . By Separating Hyperplane Theorem, there
exists (x⇤, c) 2 X⇤ ⇥ R such that

x⇤(x) + ↵c > x⇤(x0) + ↵0c, 8(x,↵) 2 epi f.

If c 6= 0, it can be scaled to c = 1. Then inf(x,↵)2epi f{x⇤(x) + ↵} � x⇤(x) is
an a�ne minorant of f whose epigraph does not contain (x0,↵0). So, assume
c = 0. Choose x1 2 X such that f(x1) < 1. Then (x1, f(x1)� 1) /2 epi f , and,
by Separating Hyperplane Theorem, there exists (y⇤, c0) 2 X⇤ ⇥ R such that

y⇤(x) + ↵c0 > y⇤(x1) + (f(x1)� 1)c0, 8(x,↵) 2 epi f.

Since f(x1) < 1, we have c0 6= 0, and, by scaling, we can assume c0 = 1.
Choosing

� >
y⇤(x0) + ↵0 � inf(x,↵)2epi f{y⇤(x) + ↵}

inf(x,↵)2epi f{x⇤(x) + ↵}� x⇤(x0)

and setting z⇤ = �x⇤ + y⇤ yields

inf
(x,↵)2epi f

{z⇤(x)+↵} � � inf
(x,↵)2epi f

{x⇤(x)+↵}+ inf
(x,↵)2epi f

{y⇤(x)+↵} > z⇤(x0)+↵0.

So, inf(x,↵)2epi f{z⇤(x) + ↵} � z⇤(x) is an a�ne minorant of f whose epigraph
does not contain (x0,↵0).

Definition 4. Let f : X ! R [ {±1}. Then f⇤ : X⇤ ! R [ {±1} defined by

f⇤(x⇤) := sup
x2X

{x⇤(x)� f(x)}

is called the convex conjugate of f , and the mapping

f 7! f⇤

is called Legendre-Fenchel transformation.

Theorem 4. (Fenchel-Moreau Theorem) If f is l.s.c. and convex, then Legendre-

Fenchel transformation is bijection: f⇤⇤ = f , where

f⇤⇤(x) := sup
x⇤2X⇤

{x⇤(x)� f⇤(x⇤)}.
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Proof. By the definition of f⇤,

f(x) � sup
x⇤2X⇤

{x⇤(x)� f⇤(x)}, for every x 2 X.

i.e. f � f⇤⇤. Let a be an a�ne minorant of f ; a  f , so, a⇤ � f⇤, so, a⇤⇤  f⇤⇤,
but since a is a�ne, a⇤⇤ = a. So, every a�ne minorant of f is an a�ne minorant
of f⇤⇤. By Lemma 3, f  f⇤⇤.

We could have proved the theorem also making the following observation:
for fixed x 2 X, the directional derivative

f 0(x; y) := lim
✏#0

f(x+ ✏y)� f(x)

✏

is sub-linear as a functional of y. By Hahn-Banach Theorem, there exists f̃ 0 2
X⇤ such that

f̃ 0(y)  f 0(x; y)  f(x+ y)� f(x), for every y 2 X.

So, f(x) + f⇤(f̃ 0) = f̃ 0(x), which completes the proof. We say that f̃ 0 is a sub-
gradient of f at x, and denote f̃ 0 2 @f(x). The collection of all sub-gradients
@f is called sub-di↵erential.
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Proposition B.4 Let f, g : Rn ! (�1, +1].
(i) If f � g then f

⇤  g
⇤
.

(ii) If f
⇤(x) = �1 for some x 2 Rn

, then f ⌘ +1.

(iii) For every x0, ⇠ 2 Rn

f
⇤(⇠) � ⇠

t
x0 � f(x0) (Young’s inequality).

(iv) f � f
⇤⇤

.

(v) For every x0, ⇠ 2 Rn

f
⇤(⇠) = ⇠

t
x0 � f(x0) if and only if ⇠ 2 @f(x0).

Exercise B.2 Give a proof of Proposition B.4.

Theorem B.5 (Fenchel-Moreau) Let f : Rn ! (�1, +1] be convex. Then

f(x0) = f
⇤⇤(x0) if and only if f is lower semicontinuous at x0.

Proof. One implication is very simple: if f(x0) = f
⇤⇤(x0), and if xn ! x0 then

lim infn f(xn) � lim infn f
⇤⇤(xn) by Proposition B.4(iv). Also, lim infn f

⇤⇤(xn) �
f
⇤⇤(x0) because every conjugate, being the supremum of a collection of continuous

functions, is automatically lower semicontinuous. So we conclude that lim infn f(xn) �
f
⇤⇤(x0) = f(x0), i.e., f is lower semicontinuous at x0.

In the converse direction, by Proposition B.4(iv) it is enough to prove f
⇤⇤(x0) � r

for an arbitrary r < f(x0), both when f(x0) < +1 and when f(x0) = +1.
Case 1: f(x0) < +1. It is easy to check that C := epi f := {(x, r) 2 Rn ⇥ R :

r � f(x)}, the epigraph of f , is a convex set in Rn+1 (this is Theorem 3.2.2 in [1] – as
can be seen immediately from its proof, it continues to hold for functions with values
in (�1, +1] and we know already that this theorem also holds for sets with empty
interior). Hence, the closure cl C is also convex. We claim now that (x0, r) 62 cl C.
For suppose (x0, r) would be the limit of a sequence of points (xn, yn) 2 C. Then
yn � f(xn) for each n, and in the limit this would give r � lim infn f(xn) � f(x0) by
lower semicontinuity of f at x0. This contradiction proves that the claim holds. We
may now apply separation [1, Theorem 2.4.10]: there exist ↵ 2 R and p =: (⇠0, µ) 6=
(0, 0), with ⇠0 2 Rn and µ 2 R, such that

⇠
t
0x + µy  ↵ < ⇠

t
0x0 + µr for all (x, y) 2 C. (3)

It is clear that µ  0 by the definition of C. Also, it is obvious that µ 6= 0 (just
consider what happens if we take (x, y) = (x0, f(x0)) in (3) – and we may do this by
virtue of f(x0) 2 R). Hence, we can divide by �µ in (3) and get

⇠
t
1x� f(x)  ⇠

t
1x0 � r for all x 2 dom f.

Notice that this inequality continues to hold outside dom f as well; thus, f
⇤(⇠1) 

⇠
t
1x0 � r, which implies the desired inequality f

⇤⇤(x0) � r.
Case 2a: f ⌘ +1. In this case, the desired result is trivial, for f

⇤ ⌘ �1, so
f
⇤⇤ ⌘ +1.
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Case 2b: f(x1) < +1 for some x1 2 Rn
. We can repeat the proof of Case 1 until

(3). If µ happens to be nonzero, then of course we finish as in Case 1. However, if
µ = 0 we only get

⇠
t
0x  ↵ < ⇠

t
0x0 for all x 2 dom f

from (3). We then repeat the full proof of Case 1, but with x0 replaced by x1 and r

by f(x1)� 1. This gives the existence of ⇠ 2 Rn such that

⇠
t
x� f(x)  ⇠

t
x1 � f(x1) + 1 for all x 2 dom f.

Now for any � > 0, observe that by the two previous inequalities

f(x) � (⇠ + �⇠0)
t
x� ⇠

t
x1 + f(x1)� 1� ↵� for all x 2 Rn

,

which implies f
⇤(⇠ +�⇠0)  ⇠

t
x1�f(x1)+1+�↵. By definition of f

⇤⇤(x0), this gives

f
⇤⇤(x0) � �(⇠t

0x0 � ↵) + ⇠
t
x0 � ⇠

t
x1 + f(x1)� 1,

which implies f
⇤⇤(x0) = +1, by letting � go to infinity (note that ⇠

t
0x0 � ↵ > 0 by

the above). QED

Corollary B.6 (bipolar theorem for cones) Let K be a closed convex cone in

Rn
. Then K = K

⇤⇤ := (K⇤)⇤.

Proof. Observe that f := �K is a lower semicontinuous convex function. Hence,
f
⇤⇤ = f by Theorem B.5. By Example B.3 we know that f

⇤ = �K⇤ , so f
⇤⇤ = �K⇤⇤

follows by another application of this fact. Hence �K = �K⇤⇤ . QED

Exercise B.3 Prove Farkas’ theorem (see Exercise 3.5) by means of Corollary B.6.

Exercise B.4 Redo Exercise 3.3 by making it a special case of Corollary B.6.
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