3.1 Basics of Convex Optimization

Let's consider the problem

$$
\min _{x \in C} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is a convex function and C is a convex subset of \mathbb{R}^{n}.
Definition: A point $x \in C \cap \operatorname{dom} f$ is called a feasible point.
If there is at least one feasible point, then the problem is called feasible. A point x^{*} is called a minimum of f over C if

$$
x^{*} \in C \cap \operatorname{dom} f, \quad f\left(x^{*}\right)=\inf _{x \in C} f(x)
$$

We may write $x^{*} \in \arg \min _{x \in C} f(x)$ or even $x^{*}=\arg \min _{x \in C} f(x)$ if x^{*} is the unique minimizer.

Other than global minimum, we also have a weaker definition of local minimum, one that is only minimum compared to the points nearby.

Definition:(Local minimizer) We call x^{*} a local minimum of f over C if $x^{*} \in C \cap \operatorname{dom} f$ and there exists $\epsilon>0$ such that

$$
f\left(x^{*}\right) \leq f(x), \forall x \in C \text { with }\left\|x-x^{*}\right\|<\epsilon
$$

In the convex setting, we have the following nice result.
Proposition: Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a convex function and let C be a convex set. Then a local mimimum of f over C is also a global minimum of f over C. If f is strictly convex, then there exists at most one global minimum of f over C.

Proof. Suppose x^{*} is a local minimum that is not global.
Then there exists x such that $f(x)<f\left(x^{*}\right)$. Then for $\lambda \in(0,1)$,

$$
f\left(\lambda x^{*}+(1-\lambda) x\right) \leq \lambda f\left(x^{*}\right)+(1-\lambda) f(x)<f\left(x^{*}\right)
$$

Since f has smaller value on the line connecting x and x^{*}, this contradicts the local minimality of x^{*}.
Suppose f is strictly convex, let x^{*} be a global minimum of f over C. Let $x \in C$ such that $x \neq x^{*}$. Consider $y=\left(x+x^{*}\right) / 2$. Then $y \in C$ and

$$
f(y)<\frac{1}{2}\left(f(x)+f\left(x^{*}\right)\right) \leq f(x)
$$

Since x^{*} is a global minimum, $f\left(x^{*}\right) \leq f(y)$.
Then $f\left(x^{*}\right)<f(x)$. Hence x^{*} is the unique global minimum of f over C.

3.1.1 Existence of solution

Let's consider a general optimization problem

$$
\min _{x \in C} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ and $C \subseteq \mathbb{R}^{n}$.
A basic question is whether a solution to the above problem exists.
Recall the famous Weierstrass theorem. Proposition: If f is continuous and C is compact, then there exists a global minimum.

In order to consider cases where C is not bounded (e.g. \mathbb{R}^{n}), we need a new notation.

Definition: (Coercivity) A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is called coercive if for all sequence $\left\{x_{k}\right\}$ with $\left\|x_{k}\right\| \rightarrow \infty$, we have $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\infty$.

Lemma: Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a continuous function. Then the following are equivalent.

1. All level sets of f are compact, i.e. $\{x \mid f(x) \leq a\}$ is compact for all a.
2. f is coercive.

Proof. Suppose all level sets of f are compact. Suppose $\left\{x_{k}\right\}$ is a sequence with $\left\|x_{k}\right\| \rightarrow \infty$. Suppose $f\left(x_{k}\right) \nrightarrow \infty$. Then there exists subsequence $x_{k_{j}}$ such that $f\left(x_{k_{j}}\right)$ is bounded by α for some α. Then $\left\{x_{k_{j}}\right\} \subset V_{\alpha}$. This contradicts the compactness of V_{α}. Hence, f is coercive.
Conversely, suppose f is coercive. Suppose V_{α} is not compact for some α. Since f is continuous, V_{α} must be closed, this means V_{α} is not bounded.
Hence, there exists a sequence $\left\{x_{k}\right\} \subset V_{\alpha}$ such that $\left\|x_{k}\right\| \rightarrow \infty$. This contradicts the coercivity of f since $f\left(x_{k}\right) \leq \alpha$.

Proposition: Suppose f is lower-semicontinuous and coercive. Suppose C is non-empty and closed. Then f has a global minimum over C.

Proof. We may assume that $f(x)<\infty$ for some $x \in C$. Then $f^{*}=\inf _{x \in C} f(x)<$ ∞.
Let $\left\{x_{k}\right\} \subset C$ be a sequence such that $\lim f\left(x_{k}\right)=f^{*}<\infty$. Then since f is coercive, $\left\{x_{k}\right\}$ is bounded. Then there exists a subsequence $x_{k_{j}}$ converging to a point x^{*}.
Since C is closed, $x^{*} \in C$. Then

$$
f^{*}=\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{j \rightarrow \infty} f\left(x_{k_{j}}\right) \geq f\left(x^{*}\right)
$$

Therefore, x^{*} is a global minimmum of f over C.

3.1.2 Optimal condition

For a unconstrained problem, one has a simple optimality test, which is the 'derivative' test in calculus.

Let f be a differentiable convex function on \mathbb{R}^{n}. Then x^{*} solves

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

if and only if $\nabla f\left(x^{*}\right)=0$. How about a constrained problem?
Let's consider the general constrained problem

$$
\min _{x \in C} f(x)
$$

where C is a convex set, and f is convex. We have the following result.

Proposition: Let C be a nonempty convex set and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex differentiable function over an open set that contains C. Then $x^{*} \in C$ minimizes f over C if and only if

$$
\left\langle\nabla f\left(x^{*}\right),\left(z-x^{*}\right)\right\rangle \geq 0, \forall z \in C .
$$

Proof. Suppose $\left\langle\nabla f\left(x^{*}\right),\left(z-x^{*}\right)\right\rangle \geq 0, \forall z \in C$, then we have,

$$
f(z)-f\left(x^{*}\right) \geq\left\langle\nabla f\left(x^{*}\right),\left(z-x^{*}\right)\right\rangle \geq 0, \forall z \in C .
$$

Hence x^{*} indeed minimizes f over C.
Conversely, suppose x^{*} minimizes f over C. Suppose on the contrary that $\left\langle\nabla f\left(x^{*}\right),\left(z-x^{*}\right)\right\rangle<0$ for some $z \in C$, then

$$
\lim _{\alpha \downarrow 0} \frac{f\left(x^{*}+\alpha\left(z-x^{*}\right)\right)-f\left(x^{*}\right)}{\alpha}=\left\langle\nabla f\left(x^{*}\right),\left(z-x^{*}\right)\right\rangle<0 .
$$

Then for sufficiently small α, we have $f\left(x^{*}+\alpha\left(z-x^{*}\right)\right)-f\left(x^{*}\right)<0$, contradicting the optimality of x^{*}.

Examples (a) Let's consider the following linear constrained problem.

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { subject to } A x=b
$$

where A is a $m \times n$ matrix and $b \in \mathbb{R}^{m}$.
Suppose we have a solution x^{*}, then

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \forall y \text { such that } A y=b
$$

This is the same as

$$
\left\langle\nabla f\left(x^{*}\right), h\right\rangle \geq 0, \forall h \in N(A)
$$

Since $-h \in N(A)$ if $h \in N(A)$, we have

$$
\left\langle\nabla f\left(x^{*}\right), h\right\rangle=0, \forall h \in N(A)
$$

Hence $\nabla f\left(x^{*}\right) \in N(A)^{\perp}=R\left(A^{T}\right)$.
So there exists $\mu \in \mathbb{R}^{m}$ such

$$
\nabla f\left(x^{*}\right)+A^{T} \mu=0
$$

To conclude, x^{*} is a solution to the minimization problem if and only if

1. $A x^{*}=b$
2. There exists $\mu^{*} \in \mathbb{R}^{m}$ such that $\nabla f\left(x^{*}\right)+A^{T} \mu=0$.
(b) Let's consider the minimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x), \text { subject to } x \geq 0
$$

Suppose we have a solution x^{*}, then

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \forall y \in \mathbb{R}_{+}^{n} .
$$

In particular, $0,2 x^{*} \in \mathbb{R}_{+}^{n}$, so

$$
\left\langle\nabla f\left(x^{*}\right), x^{*}\right\rangle=0,\left\langle\nabla f\left(x^{*}\right), y\right\rangle \geq 0, \forall y \in \mathbb{R}_{+}^{n}
$$

Hence, $\nabla f\left(x^{*}\right) \geq 0$. This is the same as saying there exists $\lambda^{*} \geq 0$ such that

$$
\nabla f\left(x^{*}\right)-\lambda^{*}=0
$$

To conclude, x^{*} is a solution if and only if

1. $x^{*} \geq 0$
2. There exists $\lambda^{*} \geq 0$ such that $\nabla f\left(x^{*}\right)-\lambda^{*}=0$
3. $\lambda_{i}^{*} x_{i}^{*}=0$
