
2.5 Basic Calculus Rules

Proposition: Let f : Rm → R be a convex function. Let F be defined by

F (x) = f(Ax)

where A ∈ Rm×n. Then
AT∂f(Ax) ⊆ ∂F (x)

Proof. Suppose AT g ∈ AT∂f(Ax), where g ∈ ∂f(Ax). Then

F (y)− F (x)− 〈AT g, y − x〉 = f(Ay)− f(Ax)− 〈g,Ay −Ax〉 ≥ 0

Theorem:(Moreau-Rockafellar) Let f, g : Rn → (−∞,∞] be proper convex
functions. Then for every x0 ∈ Rn

∂f(x0) + ∂g(x0) ⊂ ∂(f + g)(x0)

Moreover, suppose int dom(f) ∩ dom(g) 6= ∅. Then for every x0 ∈ Rn,

∂f(x0) + ∂g(x0) = ∂(f + g)(x0)

Proof. Let u1 ∈ ∂f(x0), u2 ∈ ∂g(x0). Then for every x ∈ Rn,

f(x) ≥ f(x0) + 〈u1, x− x0〉, g(x) ≥ g(x0) + 〈u2, x− x0〉

Hence, adding the two inequalities shows that u+ v ∈ ∂(f + g)(x0).
Now, let v ∈ ∂(f + g)(x0). Note that f(x0) 6= ∞, otherwise this implies that
f + g ≡ ∞. Similarly, g(x0) 6=∞. Next, consider the following two sets

Λf := {(x− x0, y) : y > f(x)− f(x0)− 〈v, x− x0〉}
Λg := {(x− x0, y) : −y ≥ g(x)− g(x0)}.

Λf ,Λg are both nonempty and convex (consider epi(f), epi(g)). Also, since
v ∈ ∂(f + g)(x0), Λf ∩ Λg = ∅ (otherwise, adding the above two inequalities
contradict the fact that v ∈ ∂(f + g))
Then Λf ,Λg can be separated by a hyperplane. So there exists (a, b) 6= 0, c such
that

〈a, x− x0〉+ by ≤ c, ∀(x, y) such that y > f(x)− f(x0)− 〈v, x− x0〉

〈a, x− x0〉+ by ≥ c, ∀(x, y) such that − y ≥ g(x)− g(x0)

Since (0, 0) ∈ Λg, c ≤ 0. Since (0, 1) ∈ Λf , b ≤ 0.
For all ε > 0, (0, ε) ∈ Λf , since b ≤ 0, letting ε→ 0, we get c ≥ 0. Hence c = 0.
Suppose b = 0, we have

〈a, x− x0〉 ≤ 0, ∀(x, y) such that y > f(x)− f(x0)− 〈v, x− x0〉
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〈a, x− x0〉 ≥ 0, ∀(x, y) such that − y ≥ g(x)− g(x0)

which are equivalent to

〈a, x− x0〉 ≤ 0, ∀x ∈ dom(f)

〈a, x− x0〉 ≥ 0, ∀x ∈ dom(g)

Let x ∈ int dom(f)∩dom(g). Then 〈a, x−x0〉 = 0. Since x ∈ int dom(f), there
exists δ > 0 such that B(x, δ) ⊂ dom(f). Then

〈a, δa
2
〉 = 〈a, x+

δa

2
− x0〉 ≤ 0

So a = 0. This contradicts the fact that (a, b) 6= 0. Hence b < 0.
Let −u2 = a

−b , we have

〈−u2, x− x0〉 ≤ y, ∀(x, y) such that y > f(x)− f(x0)− 〈v, x− x0〉.

〈−u2, x− x0〉 ≥ y,∀(x, y) such that − y ≥ g(x)− g(x0)

Consider y = g(x0)− g(x), then u2 ∈ ∂g(x0).
By considering (x, f(x) − f(x0) − 〈v, x − x0〉 + ε and letting ε → 0, we have
u1 = v − u2 ∈ ∂f(x0).
Hence v = u1 + u2 ∈ ∂f(x0) + ∂g(x0).
Therefore ∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0).

2.5.1 Directional Derivative

Definition:(Directional Derivative) Let f : Rn → R be a function with
x ∈ domf . The directional derivative of f at x with direction d is given by

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t

Lemma: Let f : Rn → R be a convex function with x ∈ domf . Then for all
direction d ∈ Rn and λ1, λ2 ∈ R with λ2 > λ1 > 0, we have

f(x+ λ1d)− f(x)

λ1
≤ f(x+ λ2d)− f(x)

λ2

Proof. Note that x+ λ1d = λ1

λ2
(x+ λ2d) + (1− λ1

λ2
)x. Then

f(x+ λ1d) ≤ λ1
λ2
f(x+ λ2d) + (1− λ1

λ2
)f(x)

The result follows from the above inequality.

Lemma: Let f : Rn → R be a convex function with x ∈ int(domf). Then
f ′(x; d) is finite for every direction d ∈ Rn.
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Proof. Recall that f is locally Lipschitz at x. Then for t small,∣∣f(x+ td)− f(x)

t

∣∣ ≤ Lt||d||
t
≤ L||d|| <∞

Theorem: Let f : Rn → R be a convex function with x ∈ int(domf). Then

f ′(x; d) = sup
g∈∂f(x)

〈g, d〉

Proof. By the above proposition, we have f ′(x; d) = inft>0
f(x+td)−f(x)

t .
Define ψ(d) := f ′(x; d). Then ψ is convex and finite for every d.
Therefore, ψ is continuous and hence closed.
Hence, ψ = ψ∗∗ = supg{〈g, d〉 − ψ∗(g)}.
We will show that

ψ∗(g) =

{
0 g ∈ ∂f(x)

∞ otherwise

Note that ψ(0) = 0. Then for all g,

ψ∗(g) ≥ 〈g, 0〉 − ψ(0) = 0

Suppose g ∈ ∂f(x). Then 〈g, d〉 − ψ(d) ≤ f(x+td)−f(x)
t − ψ(d) for all t > 0. So

〈g, d〉 − ψ(d) ≤ f(x; d)− ψ(d) = 0 for all d

Therefore, ψ∗(g) = supd{〈g, d〉 − ψ(d)} ≤ 0.
Suppose g /∈ ∂f(x). Then there exists y such that

〈g, y − x〉 ≥ f(y)− f(x)

Write y = x+ d0, then we have 〈g, d0〉 ≥ f(x+ d0)− f(x) ≥ f ′(x; d0).
Note that tψ(d) = ψ(td), then

ψ∗(g) = sup
d
{〈g, d〉 − ψ(d)} ≥ sup

t>0
{〈g, td〉 − ψ(td)} = sup

t>0
{t(〈g, d〉 − ψ(d))} ≥ ∞

Consider ψ∗∗(g) = supd{〈g, d〉 − ψ∗(g)}.
It follows that ψ∗∗(g) = supg∈∂f(x)〈g, d〉.
Hence, f ′(x; d) = ψ(d) = ψ∗∗(d) = supg∈∂f(x)〈g, d〉.

Theorem:(Dubovitskii-Milyutin) Let f1, ..., fm : Rn → R be convex func-
tions and let x ∈ ∩mint(domfi). Let f : Rn → R be given by

f(x) := max
m

fi(x)

and let I(x) = {i| fi(x) = f(x)}. Then

∂f(x) = conv
( ⋃
i∈I(x)

∂fi(x)
)
.
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Proof. Note that if g ∈ ∂fi(x), then g ∈ ∂f(x) for all i ∈ I(x).
Also, since ∂f(x) is convex, then conv

(⋃
i∈I(x) ∂fi(x)

)
⊆ ∂f(x).

So suppose g0 ∈ ∂f(x) but g0 /∈ conv
(⋃

i∈I(x) ∂fi(x)
)
.

Note that conv
(⋃

i∈I(x) ∂fi(x)
)

is compact (Each ∂fi(x) is compact).
Then there exists d such that

〈g0, d〉 > max
i∈I(x)

sup
g∈∂fi(x)

〈g, d〉 = max
i∈I(x)

f ′i(x; d)

We claim that f ′(x; d) = maxi∈I(x) f
′
i(x; d). Then 〈g0, d〉 > f ′(x; d).

But since g0 ∈ ∂f(x), then f(x+ td)− f(x) ≥ 〈g0, d〉 for all t > 0.
Then f ′(x; d) ≥ 〈g0, d〉. This is a contradiction.
Therefore g0 ∈ conv

(⋃
i∈I(x) ∂fi(x)

)
.

It remains to prove that f ′(x; d) = maxi∈I(x) f
′
i(x; d). First for all t > 0,

f(x+ td)− f(x)

t
≥ fi(x+ td)− fi(x)

t
for all i ∈ I(x)

Then f ′(x; d) ≥ f ′i(x; d). Consider {tk} with tk ↓ 0 and xk = x+ tkd.
Then there exists i such that i ∈ I(xk) for infinitely many k.
Without loss of generality, assume i ∈ I(xk) for all k.
Then fi(xk) ≥ fi(xk) for all i, k.
Taking limit and since fi are continuous at x, we have

fi(x) ≥ fi(x) for all i

Hence

f ′(x; d) = lim
k→∞

f(x+ tkd)− f(x)

tk
= lim
k→∞

fi(x+ tkd)− fi(x)

tk
= f ′

i
(x; d)

Therefore, f ′(x; d) = maxi∈I(x) f
′
i(x; d).
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