2.3 Conjugate Functions

In the next chapter, we will consider the concept of duality. One notion that is
crucial in the theory of duality is the conjugate function.

Definition:(Conjugate function) Let f : R* — R be a function. The conju-
gate function of f is the function f*:R™ — [—o00, 00| defined by

f*(y) = sup {{z,y) — f(2)}

z€R™
Note that f* is convex even if f is not convex.

Examples of conjugate functions
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If |alls <1, {(0,a) —||0]|oc =0, f*(a) > 0 in this case.
If ||a||1 > 1, then (z,a) — ||z||o is unbounded. Hence

(@) = {o lally <1

oo otherwise
We can also consider the conjugate of f* (double conjugate of f). It is given by
[ (@) = sup {{y,z) — f*(y)}
yeR™
It is natural to ask whether f = f**. Indeed, this is true under some conditions.

Theorem: Let f: R” — R be a function. Then:



1. f(z) > f**(x) for all x € R™.
2. If f is closed, proper and convex, then f(x) = f**(x).

Proof. 1 For all x and y, we have
f(y) = (z,y)

So f(x) = (z,y) — f*(y) for all z,y. (*)
Therefore, f(z) > sup{(z,5) — /*(1)} = F**(2).
2 By (1), we have epif C epif**. We need to show epif** C epif.
It suffices to show that (x, f**(z)) €epif. So suppose not.
Since epif is a closed convex set, (x, f**(z)) can be strictly separated from epif.
Hence
(y,2) +bs <c <(y,z) +bf"(x)
for some y, b, ¢, and for all (z,s) € epif.
We may assume b #£ 0 (If not, add (g, —1) to (y,b) for some 7 €dom f*).
We must have b < 0. Since if b > 0, we have a contradiction by choosing s large.
Therefore, we further assume b = —1. Hence, in particular, we have

<y,Z> - f(Z) <c< <y71’> - f**(.’ﬂ)
Then taking supremum over z, we have
F )+ 7 (@) <(z,y)

This is a contradiction to (*). Hence epif** = epif.
Therefore, f = f**. O

2.4 Subgradient of Convex Function

In this section, we introduce the crucial concept of subgradient for convex func-
tions. It acts as generalized derivative for nonsmooth functions and has many
applications in optimization theory.

Definition:(Subgradient) Let f : R®” — R be a convex function and let
T € domf. An element g € R" is called a subgradient of f at T if

f(z) — f(@) > (g, —7) for all x € R"
The collection of all subgradients of f is denoted by df(T).
Proposition: Let f be a convex function and let Z € int(domf), then Jf(Z) is
nonempty and compact.

Proof. Since f is convex, epif is a convex set.
By the supporting hyperplane theorem to epif and the point (Z, f(T)), there
exists (a,b) # 0 such that

(3] Do seaccom



By considering (Z,t) € epif, we must have b < 0. Also
(a,2 —T) +b(f(x) — f(T)) <0 for all x

Suppose b = 0, this implies {a,x —Z) < 0.
This is impossible since T € int(domf). Hence, b < 0. Then

(- 50-T) < f(&) - £(@)

Therefore, —¢ € f () # 0.
Recall that a function is locally Lipschitz continuous on the int(domf).
So there exists € > 0 such that

f(@) = f(y) < Lllz — yl|, for all z,y € B(T; )

Let g € 0f(%). Consider x =T + ﬁ7 then

ellgll = (9,2 =) < f(z) = f(Z) < Ll|z - 7[| = Le

Then we have ||g|| < L. Therefore 9f(Z) is bounded.
It follows from the definition that df(Z) is closed and hence compact. O

For a differentiable convex function, the subdifferential is just the usual gradient.
Proposition: Let f : R” — R be convex and differentiable at T € int(domf).
Then 0f(z) = {Vf(Z)}.

Proof. Since f is convex, we have
(Vf(Z),z—7) < f(z) — f(T) for all z € R"

So Vf(T) € 0f(T).
Conversely, suppose g € 9f(T). Since f is differentiable at T, then for all € > 0,
there exists § > 0 such that

f@)— f(@) = (Vf(@),x —T) <¢||lr —T|| for all x with ||z —F|| < ¢

Then
(9—Vf(@),z—7) <¢€llz —7T|| for all z with ||z —Z|| < ¢

Hence ||g — Vf(T)|] < e. Since € is arbitrary, this shows that g = V f(Z).
Therefore, 0f(Z) = {Vf(T)}. O

Example: Let f : R — R be defined by

0 x € [-1,1]
fl@)=<z| -1 =ze][-2,1)U(1,2]
00 x € (—00,—2) U (2,00)



For z € (—o0, —2) U (2,00), f(z) = oo, hence df(z) = 0.

For z € (—2,1), (—=1,1) and (1,2), f is differentiable, hence 9f(z) = {V f(x)}.
For z = 1, we show that df(z) = [0, 1]. Let g € 9f(1). Then

f(y) > g(z—1) for all y

If y € [1,2], thenz — 1 > g(z — 1), that is 1 > g.
If y e [-1,1], then 0 > g(xz — 1), s0 g(1 —x) > 0 and g > 0.
It is easy to check that for g € [0,1], g satisfies

fly) > f(1) +g(z—1) for all y

Hence, 0f(1) = [0, 1].
The subdifferential of other points can be found similarly.
We have
0 x € (—00,—2) U (2,00)
(=00, —1] x=-2
{-1} x € (—2,-1)
0

[—1,0] x=-1
1@ =9 o ze(~1,1)

[0,1] z=1

{1} z e (1,2)

[1,00) r=2

The following results show the relationship between subgradients and conjugate
of convex functions.

Proposition: Let f: R” — R be a function with domf # (). Then
(,y) < f(x)+ f*(y) for all x,y

Proof. By the definition of conjugate function, f*(y) > (x,y) — f(x). O
Theorem: Let f: R” — R be convex with x € domf. Then g € df(z) if and
only if

f(@)+ 1" (9) = (9,2)
Proof. Suppose g € 0f(x), then

f@) +{g,y) — f(y) < {g,2), for all y

Then f(z)+ f*(g) < (g,z). Hence by the above proposition, we have

f@)+ f(g9) = (g.2)

Suppose f(z) + f*(g) = (g, z), then by the definition of conjugate function,

[ (9) = (g,y) — f(y) for all y



Since f*(g) = (g9,z) — f(z), we have

(g,x) — f(z) > (g,y) — f(y) for all y

Therefore, g € 0f(z).



