
2.3 Conjugate Functions

In the next chapter, we will consider the concept of duality. One notion that is
crucial in the theory of duality is the conjugate function.

Definition:(Conjugate function) Let f : Rn → R be a function. The conju-
gate function of f is the function f∗ : Rn → [−∞,∞] defined by

f∗(y) = sup
x∈Rn

{〈x, y〉 − f(x)}

Note that f∗ is convex even if f is not convex.

Examples of conjugate functions

1. f(x) = ||x||1

f∗(a) = sup
x∈Rn

〈x, a〉 − ||x||1

= sup
∑

(anxn − |xn|)

=

{
0 ||a||∞ ≤ 1

∞ otherwise

2. f(x) = ||x||∞

f∗(a) = sup
x∈Rn

∑
anxn −max

n
|xn|

≤ sup
∑
|an||xn| −max

n
|xn|

≤ max
n
|xn|||a||1 −max

n
|xn|

≤ sup ||x||∞(||a||1 − 1)

=

{
0 ||a||1 ≤ 1

∞ otherwise

If ||a||1 ≤ 1, 〈0, a〉 − ||0||∞ = 0, f∗(a) ≥ 0 in this case.
If ||a||1 > 1, then 〈x, a〉 − ||x||∞ is unbounded. Hence

f∗(a) =

{
0 ||a||1 < 1

∞ otherwise

We can also consider the conjugate of f∗ (double conjugate of f). It is given by

f∗∗(x) = sup
y∈Rn

{〈y, x〉 − f∗(y)}

It is natural to ask whether f = f∗∗. Indeed, this is true under some conditions.

Theorem: Let f : Rn → R be a function. Then:
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1. f(x) ≥ f∗∗(x) for all x ∈ Rn.

2. If f is closed, proper and convex, then f(x) = f∗∗(x).

Proof. 1 For all x and y, we have

f∗(y) ≥ 〈x, y〉

So f(x) ≥ 〈x, y〉 − f∗(y) for all x, y. (*)
Therefore, f(x) ≥ sup{〈x, y〉 − f∗(y)} = f∗∗(x).
2 By (1), we have epif ⊆ epif∗∗. We need to show epif∗∗ ⊆ epif .
It suffices to show that (x, f∗∗(x)) ∈epif . So suppose not.
Since epif is a closed convex set, (x, f∗∗(x)) can be strictly separated from epif .
Hence

〈y, z〉+ bs < c < 〈y, x〉+ bf∗∗(x)

for some y, b, c, and for all (z, s) ∈ epif .
We may assume b 6= 0 (If not, add ε(y,−1) to (y, b) for some y ∈domf∗).
We must have b < 0. Since if b > 0, we have a contradiction by choosing s large.
Therefore, we further assume b = −1. Hence, in particular, we have

〈y, z〉 − f(z) < c < 〈y, x〉 − f∗∗(x)

Then taking supremum over z, we have

f∗(y) + f∗∗(x) < 〈x, y〉

This is a contradiction to (*). Hence epif∗∗ = epif .
Therefore, f = f∗∗.

2.4 Subgradient of Convex Function

In this section, we introduce the crucial concept of subgradient for convex func-
tions. It acts as generalized derivative for nonsmooth functions and has many
applications in optimization theory.

Definition:(Subgradient) Let f : Rn → R be a convex function and let
x ∈ domf . An element g ∈ Rn is called a subgradient of f at x if

f(x)− f(x) ≥ 〈g, x− x〉 for all x ∈ Rn

The collection of all subgradients of f is denoted by ∂f(x).

Proposition: Let f be a convex function and let x ∈ int(domf), then ∂f(x) is
nonempty and compact.

Proof. Since f is convex, epif is a convex set.
By the supporting hyperplane theorem to epif and the point (x, f(x)), there
exists (a, b) 6= 0 such that〈[

a
b

]
,

([
x
t

]
−
[

x
f(x)

])〉
≤ 0, for all (x, t) ∈ epif
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By considering (x, t) ∈ epif, we must have b ≤ 0. Also

〈a, x− x〉+ b(f(x)− f(x)) ≤ 0 for all x

Suppose b = 0, this implies 〈a, x− x〉 ≤ 0.
This is impossible since x ∈ int(domf). Hence, b < 0. Then〈

− a

b
, x− x

〉
≤ f(x)− f(x)

Therefore, −ab ∈ ∂f(x) 6= ∅.
Recall that a function is locally Lipschitz continuous on the int(domf).
So there exists ε > 0 such that

f(x)− f(y) ≤ L||x− y||, for all x, y ∈ B(x; ε)

Let g ∈ ∂f(x). Consider x = x+ εg
||g|| , then

ε||g|| = 〈g, x− x〉 ≤ f(x)− f(x) ≤ L||x− x|| = Lε

Then we have ||g|| ≤ L. Therefore ∂f(x) is bounded.
It follows from the definition that ∂f(x) is closed and hence compact.

For a differentiable convex function, the subdifferential is just the usual gradient.
Proposition: Let f : Rn → R be convex and differentiable at x ∈ int(domf).
Then ∂f(x) = {∇f(x)}.

Proof. Since f is convex, we have

〈∇f(x), x− x〉 ≤ f(x)− f(x) for all x ∈ Rn

So ∇f(x) ∈ ∂f(x).
Conversely, suppose g ∈ ∂f(x). Since f is differentiable at x, then for all ε > 0,
there exists δ > 0 such that

f(x)− f(x)− 〈∇f(x), x− x〉 ≤ ε||x− x|| for all x with ||x− x|| < δ

Then
〈g −∇f(x), x− x〉 ≤ ε||x− x|| for all x with ||x− x|| < δ

Hence ||g −∇f(x)|| ≤ ε. Since ε is arbitrary, this shows that g = ∇f(x).
Therefore, ∂f(x) = {∇f(x)}.

Example: Let f : R→ R be defined by

f(x) :=


0 x ∈ [−1, 1]

|x| − 1 x ∈ [−2, 1) ∪ (1, 2]

∞ x ∈ (−∞,−2) ∪ (2,∞)
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For x ∈ (−2, 1), (−1, 1) and (1, 2), f is differentiable, hence ∂f(x) = {∇f(x)}.
For x ∈ (−∞,−2) ∪ (2,∞), f(x) =∞, hence ∂f(x) = ∅.
For x = 1, we show that ∂f(x) = [0, 1]. Let g ∈ ∂f(1). Then

f(y) ≥ g(x− 1) for all y

If y ∈ [1, 2], then x− 1 ≥ g(x− 1), that is 1 ≥ g.
If y ∈ [−1, 1], then 0 ≥ g(x− 1), so g(1− x) ≥ 0 and g ≥ 0.
It is easy to check that for g ∈ [0, 1], g satisfies

f(y) ≥ f(1) + g(x− 1) for all y

Hence, ∂f(1) = [0, 1].
The subdifferential of other points can be found similarly.
We have

∂f(x) =



∅ x ∈ (−∞,−2) ∪ (2,∞)

(−∞,−1] x = −2

{−1} x ∈ (−2,−1)

[−1, 0] x = −1

{0} x ∈ (−1, 1)

[0, 1] x = 1

{1} x ∈ (1, 2)

[1,∞) x = 2

The following results show the relationship between subgradients and conjugate
of convex functions.

Proposition: Let f : Rn → R be a function with domf 6= ∅. Then

〈x, y〉 ≤ f(x) + f∗(y) for all x, y

Proof. By the definition of conjugate function, f∗(y) ≥ 〈x, y〉 − f(x).

Theorem: Let f : Rn → R be convex with x ∈ domf . Then g ∈ ∂f(x) if and
only if

f(x) + f∗(g) = 〈g, x〉

Proof. Suppose g ∈ ∂f(x), then

f(x) + 〈g, y〉 − f(y) ≤ 〈g, x〉, for all y

Then f(x) + f∗(g) ≤ 〈g, x〉. Hence by the above proposition, we have

f(x) + f∗(g) = 〈g, x〉

Suppose f(x) + f∗(g) = 〈g, x〉, then by the definition of conjugate function,

f∗(g) ≥ 〈g, y〉 − f(y) for all y
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Since f∗(g) = 〈g, x〉 − f(x), we have

〈g, x〉 − f(x) ≥ 〈g, y〉 − f(y) for all y

Therefore, g ∈ ∂f(x).
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