2 Subdifferential Calculus

2.1 Convex Separation

The separating theorems are of fundamental importance in convex analysis and optimization. This section provides some of the useful results.

Definition:(Hyperplane Separation) Two sets C_{1}, C_{2} are said to be separated by a hyperplane if there exists $a \neq 0$ such that

$$
\sup _{x \in C_{1}}\langle a, x\rangle \leq \inf _{y \in C_{2}}\langle a, y\rangle
$$

C_{1}, C_{2} are said to be strictly separated if there exists $a \neq 0$ such that

$$
\sup _{x \in C_{1}}\langle a, x\rangle<\inf _{y \in C_{2}}\langle a, y\rangle
$$

If x is a relative boundary point of C, a hyperplane that separates C and $\{x\}$ is called a supporting hyperplane at x.

We will focus on the separation of two convex sets. To proof the existence of such separation, we start with two lemmas.
Lemma: Let C be an nonempty, closed convex set and $\bar{x} \notin C$. Then there exists nonzero a such that

$$
\sup _{x \in C}\langle a, x\rangle<\langle a, \bar{x}\rangle
$$

Proof. Let $w=P_{C}(\bar{x})$ (which exists by the projection property). Then

$$
\langle\bar{x}-w, x\rangle \leq\langle\bar{x}-w, w\rangle \text { for all } x \in C .
$$

Let $a=\bar{x}-w \neq 0$, then

$$
\langle a, x\rangle \leq\langle a, w\rangle=\langle a, \bar{x}\rangle-\|\bar{x}-w\|^{2}<\langle a, \bar{x}\rangle
$$

Lemma: Let C be a nonempty, convex subset of \mathbb{R}^{n} with $x \in \bar{C} \backslash \operatorname{ri}(C)$. Then there exists $\left\{x_{k}\right\}$ such that $x_{k} \rightarrow x$ while $x_{k} \notin \bar{C}$ for all k.

Proof. Since ri (C) is nonempty, pick $x_{0} \in \operatorname{ri}(C)$.
Let $x_{k}=\frac{k+1}{k} x-\frac{x_{0}}{k}$.
Clearly, $x_{k} \rightarrow x$. It remains to show that $x_{k} \notin \bar{C}$. Suppose otherwise, then by the Line Segment property,

$$
x=\frac{1}{k+1} x_{0}+\frac{k}{k+1}\left(\frac{k+1}{k} x-\frac{x_{0}}{k}\right) \in \operatorname{ri}(C)
$$

This is a contradiction. Hence $x_{k} \notin \bar{C}$ for all k.

Theorem:(Supporting Hyperplane Theorem) Let C be a nonempty, convex set. Suppose $\bar{x} \in \operatorname{rel} \partial C=\bar{C} \backslash \operatorname{ri}(C)$. Then there exists $a \neq 0$ such that

$$
\sup _{x \in \bar{C}}\langle a, x\rangle \leq\langle a, \bar{x}\rangle
$$

Proof. Since $\bar{x} \in$ rel ∂C. Then there exists $x_{k} \notin \bar{C}$ with $x_{k} \rightarrow \bar{x}$.
By lemma, there exists $a_{k} \neq 0$ such that

$$
\sup _{x \in \bar{C}}\left\langle a_{k}, x\right\rangle<\left\langle a_{k}, x_{k}\right\rangle
$$

By dividing $\left\|a_{k}\right\|$, we may assume $\left\{a_{k}\right\}$ is bounded.
Since $\left\{a_{k}\right\}$ is bounded, it has a converging subsequence.
Without loss of generality (considering the subsequence), we may assume that $a_{k} \rightarrow a \neq 0$
Taking the limit, we have for all $x \in \bar{C}$

$$
\langle a, x\rangle \leq\langle a, \bar{x}\rangle
$$

Theorem:(Separating Hyperplane Theorem) Let C_{1}, C_{2} be two convex sets. Suppose $C_{1} \cap C_{2}=\emptyset$. Then there exists a hyperplane that separates C_{1} and C_{2}.

Proof. Consider $C:=C_{1}-C_{2}$. Since $C_{1} \cap C_{2}=\emptyset, 0 \notin C$.
There are two cases:
Case (1): $0 \in \bar{C}$.
By the supporting hyperplane theorem, there exists $a \neq 0$ such that

$$
\langle a, x\rangle \leq\langle a, 0\rangle=0, \text { for all } x \in C
$$

That is

$$
\left\langle a, x_{1}\right\rangle \leq\left\langle a, x_{2}\right\rangle
$$

Case (2): $0 \notin \bar{C}$
The result follows directly from the previous lemma.
In order to get strict separation, we need more assumptions.
Theorem:(Strict Hyperplane Separation) Let C_{1}, C_{2} be nonempty, closed convex sets with $C_{1} \cap C_{2}=\emptyset$. Suppose at least one of the two sets is also bounded. Then there exists $a \neq 0$ such that

$$
\sup _{x_{1} \in C_{1}}\left\langle a, x_{1}\right\rangle<\inf _{x_{2} \in C_{2}}\left\langle a, x_{2}\right\rangle
$$

Proof. Let $C:=C_{1}-C_{2}$. Then C is a nonempty, closed convex set with $0 \notin C$. Then there exists $a \neq 0$ such that

$$
\gamma:=\sup _{x \in C}\langle a, x\rangle<0
$$

Then for all $x_{1} \in C_{1}, x_{2} \in C_{2}$, we have $\left\langle a, x_{1}\right\rangle \leq \gamma+\left\langle a, x_{2}\right\rangle$. Then

$$
\sup _{x_{1} \in C_{1}}\left\langle a, x_{1}\right\rangle \leq \gamma+\inf _{x_{2} \in C_{2}}\left\langle a, x_{2}\right\rangle<\inf _{x_{2} \in C_{2}}\left\langle a, x_{2}\right\rangle
$$

2.2 Lipschitz Continuity

In this section, we focus on the Lipschitz continuity of convex functions.
First, we start with some lemmas.
Lemma: Let $\left\{e_{1}, \ldots, e_{n}\right\}$ denote the standard basis of \mathbb{R}^{n}. Let $A:=\left\{x \pm \epsilon e_{i}\right\}$ Then the following holds:

1. $x+\delta e_{i} \in \operatorname{conv}(A)$ for $|\delta| \leq \epsilon$
2. $B(x ; \epsilon / n) \subset \operatorname{conv}(A)$

Proof.

1. Since $|\delta| \leq \epsilon$, there exists λ such that $\delta=\lambda(-\epsilon)+(1-\lambda) \epsilon$. Then,

$$
x+\delta e_{i}=\lambda\left(x-\epsilon e_{i}\right)+(1-\lambda)\left(x+\epsilon e_{i}\right) \in \operatorname{conv}(A)
$$

2. Let $y \in B(x ; \epsilon / n)$. Then $y=x+\frac{\epsilon}{n} u$, where $\|u\| \leq 1$. Write $u=\sum_{i=1}^{n} \lambda_{i} e_{i}$, then

$$
\left|\lambda_{i}\right| \leq \sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}} \leq 1
$$

So

$$
y=x+\frac{\epsilon}{n} u=x+\frac{\epsilon}{n} \sum_{i=1}^{n} \lambda_{i} e_{i}=\sum_{i=1}^{n} \frac{1}{n}\left(x+\epsilon \lambda_{i} e_{i}\right)
$$

Since $x+\epsilon \lambda_{i} e_{i} \in \operatorname{conv}(A), y \in \operatorname{conv}(A)$. Hence $B\left(x ; \frac{\epsilon}{n}\right) \subseteq \operatorname{conv}(A)$.

Lemma: If a convex function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is bounded above on $B(\bar{x} ; \delta)$ for some $\bar{x} \in \operatorname{dom} f$ and $\delta>0$, then f is bounded on $B(\bar{x}, \delta)$.

Proof. Suppose $f(x) \leq M$ for all $x \in B(\bar{x}, \delta)$. Let $f(\bar{x})=m$.
Suppose $x \in B(\bar{x} ; \delta)$ Let $u:=\bar{x}+(\bar{x}-x)=2 \bar{x}-x$. Then $u \in B(\bar{x}, \delta)$. We have

$$
m=f(\bar{x})=f\left(\frac{x+u}{2}\right) \leq \frac{1}{2} f(x)+\frac{1}{2} f(u)
$$

Therefore, $f(x) \geq 2 f(\bar{x})-f(u) \geq 2 m-M$. Hence f is bounded on $B(\bar{x}, \delta)$.

Theorem: Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex with $\bar{x} \in \operatorname{dom} f$. Suppose f is bounded on $B(\bar{x}, \delta)$ for some $\delta>0$, then f is Lipschitz continuous on $B\left(\bar{x} ; \frac{\delta}{2}\right)$.

Proof. Let $x, y \in B\left(\bar{x} ; \frac{\delta}{2}\right)$ with $x \neq y$. Suppose $f \leq M$ on $B(\bar{x} ; \delta)$. Let

$$
u:=x+\frac{\delta}{2\|x-y\|}(x-y)
$$

then $u \in x+\frac{\delta}{2} B \subset x+\delta B$. Also

$$
x=\frac{1}{\alpha+1} u+\frac{\alpha}{\alpha+1} y
$$

where $\alpha=\frac{\delta}{2\|x-y\|}$. Then

$$
\begin{aligned}
f(x)-f(y) & \leq \frac{1}{\alpha+1} f(u)+\frac{\alpha}{\alpha+1} f(y)-f(y) \\
& =\frac{1}{\alpha+1}(f(u)-f(y)) \leq \frac{2 M}{\alpha+1} \\
& =\frac{4 M| | x-y \|}{\delta+2\|x-y\|} \leq \frac{4 M\|x-y\|}{\delta}
\end{aligned}
$$

Proposition: A convex function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is locally Lipschitz continuous on $\operatorname{int}(\operatorname{dom} f)$.

Proof. Let $\bar{x} \in \operatorname{int}(\operatorname{dom} f)$ and let $\epsilon>0$ be such that $\bar{x} \pm \epsilon e_{i} \in \operatorname{dom} f$ for all i. Let $A:=\left\{\bar{x} \pm \epsilon e_{i}\right\}$. Then $B\left(\bar{x} ; \frac{\epsilon}{n}\right) \subseteq \operatorname{conv}(A)$. Let $M:=\max \{f(a) \mid a \in A\}$.
Pick $x \in B\left(\bar{x} ; \frac{\epsilon}{n}\right)$, then

$$
x=\sum \lambda_{i}\left(\bar{x}+\epsilon e_{i}\right), \text { with } \sum \lambda_{i}=1
$$

Hence

$$
f(x) \leq \sum \lambda_{i} f\left(\bar{x}+\epsilon e_{i}\right) \leq M
$$

Then f is bounded above on $B\left(\bar{x} ; \frac{\epsilon}{n}\right)$. Hence, by the previous theorem, f is Lipschitz continuous on $B\left(\bar{x} ; \frac{\epsilon}{2 n}\right)$

