
2 Subdifferential Calculus

2.1 Convex Separation

The separating theorems are of fundamental importance in convex analysis and
optimization. This section provides some of the useful results.

Definition:(Hyperplane Separation) Two sets C1, C2 are said to be sep-
arated by a hyperplane if there exists a 6= 0 such that

sup
x∈C1

〈a, x〉 ≤ inf
y∈C2

〈a, y〉

C1, C2 are said to be strictly separated if there exists a 6= 0 such that

sup
x∈C1

〈a, x〉 < inf
y∈C2

〈a, y〉

If x is a relative boundary point of C, a hyperplane that separates C and {x}
is called a supporting hyperplane at x.

We will focus on the separation of two convex sets. To proof the existence
of such separation, we start with two lemmas.
Lemma: Let C be an nonempty, closed convex set and x /∈ C. Then there
exists nonzero a such that

sup
x∈C
〈a, x〉 < 〈a, x〉

Proof. Let w = PC(x) (which exists by the projection property). Then

〈x− w, x〉 ≤ 〈x− w,w〉 for all x ∈ C.

Let a = x− w 6= 0, then

〈a, x〉 ≤ 〈a,w〉 = 〈a, x〉 − ||x− w||2 < 〈a, x〉

Lemma: Let C be a nonempty, convex subset of Rn with x ∈ C\ri(C). Then
there exists {xk} such that xk → x while xk /∈ C for all k.

Proof. Since ri(C) is nonempty, pick x0 ∈ri(C).
Let xk = k+1

k x− x0

k .

Clearly, xk → x. It remains to show that xk /∈ C. Suppose otherwise, then by
the Line Segment property,

x =
1

k + 1
x0 +

k

k + 1
(
k + 1

k
x− x0

k
) ∈ ri(C)

This is a contradiction. Hence xk /∈ C for all k.
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Theorem:(Supporting Hyperplane Theorem) Let C be a nonempty, con-
vex set. Suppose x ∈rel ∂C = C\ri(C). Then there exists a 6= 0 such that

sup
x∈C
〈a, x〉 ≤ 〈a, x〉

Proof. Since x ∈rel ∂C. Then there exists xk /∈ C with xk → x.
By lemma, there exists ak 6= 0 such that

sup
x∈C
〈ak, x〉 < 〈ak, xk〉

By dividing ‖ak‖, we may assume {ak} is bounded.
Since {ak} is bounded, it has a converging subsequence.
Without loss of generality (considering the subsequence), we may assume that
ak → a 6= 0
Taking the limit, we have for all x ∈ C

〈a, x〉 ≤ 〈a, x〉

Theorem:(Separating Hyperplane Theorem) Let C1, C2 be two convex
sets. Suppose C1 ∩ C2 = ∅. Then there exists a hyperplane that separates C1

and C2.

Proof. Consider C := C1 − C2. Since C1 ∩ C2 = ∅, 0 /∈ C.
There are two cases:
Case (1): 0 ∈ C.
By the supporting hyperplane theorem, there exists a 6= 0 such that

〈a, x〉 ≤ 〈a, 0〉 = 0, for all x ∈ C

That is
〈a, x1〉 ≤ 〈a, x2〉

Case (2): 0 /∈ C
The result follows directly from the previous lemma.

In order to get strict separation, we need more assumptions.

Theorem:(Strict Hyperplane Separation) Let C1, C2 be nonempty, closed
convex sets with C1 ∩ C2 = ∅. Suppose at least one of the two sets is also
bounded. Then there exists a 6= 0 such that

sup
x1∈C1

〈a, x1〉 < inf
x2∈C2

〈a, x2〉
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Proof. Let C := C1−C2. Then C is a nonempty, closed convex set with 0 /∈ C.
Then there exists a 6= 0 such that

γ := sup
x∈C
〈a, x〉 < 0

Then for all x1 ∈ C1, x2 ∈ C2, we have 〈a, x1〉 ≤ γ + 〈a, x2〉. Then

sup
x1∈C1

〈a, x1〉 ≤ γ + inf
x2∈C2

〈a, x2〉 < inf
x2∈C2

〈a, x2〉

2.2 Lipschitz Continuity

In this section, we focus on the Lipschitz continuity of convex functions.
First, we start with some lemmas.

Lemma: Let {e1, ..., en} denote the standard basis of Rn. Let A := {x± εei}
Then the following holds:

1. x+ δei ∈ conv(A) for |δ| ≤ ε

2. B(x; ε/n) ⊂ conv(A)

Proof. 1. Since |δ| ≤ ε, there exists λ such that δ = λ(−ε) + (1− λ)ε. Then,

x+ δei = λ(x− εei) + (1− λ)(x+ εei) ∈ conv(A)

2. Let y ∈ B(x; ε/n). Then y = x+ ε
nu, where ||u|| ≤ 1.Write u =

∑n
i=1 λiei,

then

|λi| ≤

√√√√ n∑
i=1

λ2i ≤ 1

So

y = x+
ε

n
u = x+

ε

n

n∑
i=1

λiei =

n∑
i=1

1

n
(x+ ελiei)

Since x+ ελiei ∈ conv(A), y ∈ conv(A). Hence B(x; εn ) ⊆ conv(A).

Lemma: If a convex function f : Rn → R is bounded above on B(x; δ) for some
x ∈ domf and δ > 0, then f is bounded on B(x, δ).

Proof. Suppose f(x) ≤M for all x ∈ B(x, δ). Let f(x) = m.
Suppose x ∈ B(x; δ) Let u := x+ (x− x) = 2x− x. Then u ∈ B(x, δ). We have

m = f(x) = f(
x+ u

2
) ≤ 1

2
f(x) +

1

2
f(u)

Therefore, f(x) ≥ 2f(x)− f(u) ≥ 2m−M . Hence f is bounded on B(x, δ).
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Theorem: Let f : Rn → R be convex with x ∈ domf . Suppose f is bounded
on B(x, δ) for some δ > 0, then f is Lipschitz continuous on B(x; δ2 ).

Proof. Let x, y ∈ B(x; δ2 ) with x 6= y. Suppose f ≤M on B(x; δ). Let

u := x+
δ

2||x− y||
(x− y)

then u ∈ x+ δ
2B ⊂ x+ δB. Also

x =
1

α+ 1
u+

α

α+ 1
y

where α = δ
2||x−y|| . Then

f(x)− f(y) ≤ 1

α+ 1
f(u) +

α

α+ 1
f(y)− f(y)

=
1

α+ 1
(f(u)− f(y)) ≤ 2M

α+ 1

=
4M ||x− y||
δ + 2||x− y||

≤ 4M ||x− y||
δ

Proposition: A convex function f : Rn → R is locally Lipschitz continuous on
int(domf).

Proof. Let x ∈ int(domf) and let ε > 0 be such that x ± εei ∈ domf for all i.
Let A := {x± εei}. Then B(x; εn ) ⊆ conv(A). Let M := max{f(a)| a ∈ A}.
Pick x ∈ B(x; εn ), then

x =
∑

λi(x+ εei), with
∑

λi = 1

Hence
f(x) ≤

∑
λif(x+ εei) ≤M

Then f is bounded above on B(x; εn ). Hence, by the previous theorem, f is
Lipschitz continuous on B(x; ε

2n )
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