## 1.5 Projection to Convex Sets

Given a set  $C \subseteq \mathbb{R}^n$ , the distance of a point to C is defined by

$$d(x;C) := \inf\{||x - y|| \mid y \in C\}$$

For closed convex sets, an important consequence is the following projection property.

**Proposition:**(Projection Property) Let C be a nonempty, closed convex subset of  $\mathbb{R}^n$ . For each  $x \in \mathbb{R}^n$ , there exists an unique  $w \in C$  such that

$$||x - w|| = d(x; C)$$

w is called the projection of x to C, and is denoted by  $P_C(x)$ .

*Proof.* By definition of d(x; C), there exists  $w_k \in C$  such that

$$d(x; C) \le ||x - w_k|| < d(x; C) + \frac{1}{k}$$

It follows that  $\{w_k\}$  is a bounded sequence. Hence it has a converging subsequence  $\{w_{k_l}\}$  which converges to a point w. Since C is closed,  $w \in C$ . Considering the limit of

$$d(x;C) \le ||x - w_{k_l}|| < d(x;C) + \frac{1}{k_l}$$

Hence d(x; C) = ||x - w||. Now suppose  $w_1 \neq w_2 \in C$  satisfy

$$||x - w_1|| = ||x - w_2|| = d(x; C)$$

Then we have,

$$2||x - w_1||^2 = ||x - w_1||^2 + ||x - w_2||^2 = 2||x - \frac{w_1 + w_2}{2}||^2 + \frac{||w_1 - w_2||^2}{2}$$

Since C is convex,  $\frac{w_1+w_2}{2} \in C$ . This gives,

$$||x - \frac{w_1 + w_2}{2}||^2 = ||x - w_1||^2 - \frac{||w_1 - w_2||^2}{4} < ||x - w_1||^2 = d(x; C)^2$$

But since C is convex,  $\frac{w_1+w_2}{2} \in C$ , this is a contradiction.

**Proposition:** Let C be a nonempty, closed convex set, then  $w = P_C(x)$  if and only if

$$\langle x - w, u - w \rangle \le 0, \ \forall u \in C$$

*Proof.* Suppose  $w = P_C(x)$ . Let  $u \in C$ ,  $\lambda \in (0, 1)$ . Since C is convex,  $\lambda u + (1 - \lambda)w \in C$ . Then

$$||x-w||^{2} = d(x;C)^{2} \le ||x-w-\lambda(u-w)||^{2} = ||x-w||^{2} - 2\lambda\langle x-w, u-w\rangle + \lambda^{2}||u-w||^{2}.$$

That is

$$2\langle x - w, u - w \rangle \le \lambda ||u - w||^2$$

Letting  $\lambda \to 0^+$ , we have

$$\langle x - w, u - w \rangle \le 0$$

Conversely, suppose

$$\langle x - w, u - w \rangle \le 0, \ \forall u \in C$$

Then

$$\begin{split} ||x - u||^2 &= ||x - w||^2 + 2\langle x - w, w - u \rangle + ||w - u||^2 \\ &\geq ||x - w||^2 - 2\langle x - w, u - w \rangle \geq ||x - w||^2 \end{split}$$

Hence  $||x - w|| \le ||x - u||$  for all  $u \in C$  and  $w = P_C(x)$ .



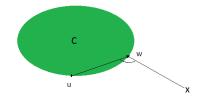


Figure 1: Projection to a convex set

## 2 Subdifferential Calculus

## 2.1 Convex Separation

The separating theorems are of fundamental importance in convex analysis and optimization. This section provides some of the useful results.

**Definition:**(Hyperplane Separation) Two sets  $C_1, C_2$  are said to be separated by a hyperplane if there exists  $a \neq 0$  such that

$$\sup_{x \in C_1} \langle a, x \rangle \le \inf_{y \in C_2} \langle a, y \rangle$$

 $C_1, C_2$  are said to be strictly separated if there exists  $a \neq 0$  such that

$$\sup_{x \in C_1} \langle a, x \rangle < \inf_{y \in C_2} \langle a, y \rangle$$

If x is a relative boundary point of C, a hyperplane that separates C and  $\{x\}$  is called a supporting hyperplane at x.

We will focus on the separation of two convex sets. To proof the existence of such separation, we start with two lemmas.

**Lemma:** Let C be an nonempty, closed convex set and  $\overline{x} \notin C$ . Then there exists nonzero a such that

$$\sup_{x \in C} \langle a, x \rangle < \langle a, \overline{x} \rangle$$

*Proof.* Let  $w = P_C(\overline{x})$  (which exists by the projection property). Then

$$\langle \overline{x} - w, x \rangle \leq \langle \overline{x} - w, w \rangle$$
 for all  $x \in C$ .

Let  $a = \overline{x} - w \neq 0$ , then

$$\langle a, x \rangle \leq \langle a, w \rangle = \langle a, \overline{x} \rangle - ||\overline{x} - w||^2 < \langle a, \overline{x} \rangle$$

**Lemma:** Let C be a nonempty, convex subset of  $\mathbb{R}^n$  with  $x \in \overline{C} \setminus \operatorname{ri}(C)$ . Then there exists  $\{x_k\}$  such that  $x_k \to x$  while  $x_k \notin \overline{C}$  for all k.

*Proof.* Since  $\operatorname{ri}(C)$  is nonempty, pick  $x_0 \in \operatorname{ri}(C)$ . Let  $x_k = \frac{k+1}{k}x - \frac{x_0}{k}$ . Clearly,  $x_k \to x$ . It remains to show that  $x_k \notin \overline{C}$ . Suppose otherwise, then by the Line Segment property,

$$x = \frac{1}{k+1}x_0 + \frac{k}{k+1}(\frac{k+1}{k}x - \frac{x_0}{k}) \in ri(C)$$

This is a contradiction. Hence  $x_k \notin \overline{C}$  for all k.

**Theorem:**(Supporting Hyperplane Theorem) Let C be a nonempty, convex set. Suppose  $\overline{x} \in \operatorname{rel} \partial C = \overline{C} \setminus \operatorname{ri}(C)$ . Then there exists  $a \neq 0$  such that

$$\sup_{x\in\overline{C}}\langle a,x\rangle\leq \langle a,\overline{x}\rangle$$

*Proof.* Since  $\overline{x} \in \text{rel } \partial C$ . Then there exists  $x_k \notin \overline{C}$  with  $x_k \to \overline{x}$ . By lemma, there exists  $a_k \neq 0$  such that

$$\sup_{x\in\overline{C}}\langle a_k,x\rangle<\langle a_k,x_k\rangle$$

By dividing  $||a_k||$ , we may assume  $\{a_k\}$  is bounded. Since  $\{a_k\}$  is bounded, it has a converging subsequence. Without loss of generality (considering the subsequence), we may assume that  $a_k \to a \neq 0$ Taking the limit, we have for all  $x \in \overline{C}$ 

$$\langle a, x \rangle \le \langle a, \overline{x} \rangle$$

**Theorem:(Separating Hyperplane Theorem)** Let  $C_1, C_2$  be two convex sets. Suppose  $C_1 \cap C_2 = \emptyset$ . Then there exists a hyperplane that separates  $C_1$  and  $C_2$ .

*Proof.* Consider  $C := C_1 - C_2$ . Since  $C_1 \cap C_2 = \emptyset$ ,  $0 \notin C$ . There are two cases: Case (1):  $0 \in \overline{C}$ . By the supporting hyperplane theorem, there exists  $a \neq 0$  such that

$$\langle a, x \rangle \leq \langle a, 0 \rangle = 0$$
, for all  $x \in C$ 

That is

$$\langle a, x_1 \rangle \le \langle a, x_2 \rangle$$

Case (2):  $0 \notin \overline{C}$ 

The result follows directly from the previous lemma.

In order to get strict separation, we need more assumptions.

**Theorem:(Strict Hyperplane Separation)** Let  $C_1, C_2$  be nonempty, closed convex sets with  $C_1 \cap C_2 = \emptyset$ . Suppose at least one of the two sets is also bounded. Then there exists  $a \neq 0$  such that

$$\sup_{x_1 \in C_1} \langle a, x_1 \rangle < \inf_{x_2 \in C_2} \langle a, x_2 \rangle$$

*Proof.* Let  $C := C_1 - C_2$ . Then C is a nonempty, closed convex set with  $0 \notin C$ . Then there exists  $a \neq 0$  such that

$$\gamma := \sup_{x \in C} \langle a, x \rangle < 0$$

Then for all  $x_1 \in C_1, x_2 \in C_2$ , we have  $\langle a, x_1 \rangle \leq \gamma + \langle a, x_2 \rangle$ . Then

$$\sup_{x_1 \in C_1} \langle a, x_1 \rangle \leq \gamma + \inf_{x_2 \in C_2} \langle a, x_2 \rangle < \inf_{x_2 \in C_2} \langle a, x_2 \rangle$$