
1.5 Projection to Convex Sets

Given a set C ⊆ Rn, the distance of a point to C is defined by

d(x;C) := inf{||x− y|| | y ∈ C}

For closed convex sets, an important consequence is the following projection
property.
Proposition:(Projection Property) Let C be a nonempty, closed convex
subset of Rn. For each x ∈ Rn, there exists an unique w ∈ C such that

||x− w|| = d(x;C)

w is called the projection of x to C, and is denoted by PC(x).

Proof. By definition of d(x;C), there exists wk ∈ C such that

d(x;C) ≤ ||x− wk|| < d(x;C) +
1

k

It follows that {wk} is a bounded sequence. Hence it has a converging subse-
quence {wkl

} which converges to a point w. Since C is closed, w ∈ C.
Considering the limit of

d(x;C) ≤ ||x− wkl
|| < d(x;C) +

1

kl

Hence d(x;C) = ||x− w||.
Now suppose w1 6= w2 ∈ C satisfy

||x− w1|| = ||x− w2|| = d(x;C)

Then we have,

2||x− w1||2 = ||x− w1||2 + ||x− w2||2 = 2||x− w1 + w2

2
||2 +

||w1 − w2||2

2

Since C is convex, w1+w2

2 ∈ C. This gives,

||x− w1 + w2

2
||2 = ||x− w1||2 −

||w1 − w2||2

4
< ||x− w1||2 = d(x;C)2

But since C is convex, w1+w2

2 ∈ C, this is a contradiction.

Proposition: Let C be a nonempty, closed convex set, then w = PC(x) if and
only if

〈x− w, u− w〉 ≤ 0, ∀u ∈ C
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Proof. Suppose w = PC(x).
Let u ∈ C, λ ∈ (0, 1). Since C is convex, λu+ (1− λ)w ∈ C. Then

||x−w||2 = d(x;C)2 ≤ ||x−w−λ(u−w)||2 = ||x−w||2−2λ〈x−w, u−w〉+λ2||u−w||2.

That is
2〈x− w, u− w〉 ≤ λ||u− w||2

Letting λ→ 0+, we have
〈x− w, u− w〉 ≤ 0

Conversely, suppose
〈x− w, u− w〉 ≤ 0, ∀u ∈ C

Then

||x− u||2 = ||x− w||2 + 2〈x− w,w − u〉+ ||w − u||2

≥ ||x− w||2 − 2〈x− w, u− w〉 ≥ ||x− w||2

Hence ||x− w|| ≤ ||x− u|| for all u ∈ C and w = PC(x).

Figure 1: Projection to a convex set
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2 Subdifferential Calculus

2.1 Convex Separation

The separating theorems are of fundamental importance in convex analysis and
optimization. This section provides some of the useful results.

Definition:(Hyperplane Separation) Two sets C1, C2 are said to be sep-
arated by a hyperplane if there exists a 6= 0 such that

sup
x∈C1

〈a, x〉 ≤ inf
y∈C2

〈a, y〉

C1, C2 are said to be strictly separated if there exists a 6= 0 such that

sup
x∈C1

〈a, x〉 < inf
y∈C2

〈a, y〉

If x is a relative boundary point of C, a hyperplane that separates C and {x}
is called a supporting hyperplane at x.

We will focus on the separation of two convex sets. To proof the existence
of such separation, we start with two lemmas.
Lemma: Let C be an nonempty, closed convex set and x /∈ C. Then there
exists nonzero a such that

sup
x∈C
〈a, x〉 < 〈a, x〉

Proof. Let w = PC(x) (which exists by the projection property). Then

〈x− w, x〉 ≤ 〈x− w,w〉 for all x ∈ C.

Let a = x− w 6= 0, then

〈a, x〉 ≤ 〈a,w〉 = 〈a, x〉 − ||x− w||2 < 〈a, x〉

Lemma: Let C be a nonempty, convex subset of Rn with x ∈ C\ri(C). Then
there exists {xk} such that xk → x while xk /∈ C for all k.

Proof. Since ri(C) is nonempty, pick x0 ∈ri(C).
Let xk = k+1

k x− x0

k .

Clearly, xk → x. It remains to show that xk /∈ C. Suppose otherwise, then by
the Line Segment property,

x =
1

k + 1
x0 +

k

k + 1
(
k + 1

k
x− x0

k
) ∈ ri(C)

This is a contradiction. Hence xk /∈ C for all k.
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Theorem:(Supporting Hyperplane Theorem) Let C be a nonempty, con-
vex set. Suppose x ∈rel ∂C = C\ri(C). Then there exists a 6= 0 such that

sup
x∈C

〈a, x〉 ≤ 〈a, x〉

Proof. Since x ∈rel ∂C. Then there exists xk /∈ C with xk → x.
By lemma, there exists ak 6= 0 such that

sup
x∈C

〈ak, x〉 < 〈ak, xk〉

By dividing ‖ak‖, we may assume {ak} is bounded.
Since {ak} is bounded, it has a converging subsequence.
Without loss of generality (considering the subsequence), we may assume that
ak → a 6= 0
Taking the limit, we have for all x ∈ C

〈a, x〉 ≤ 〈a, x〉

Theorem:(Separating Hyperplane Theorem) Let C1, C2 be two convex
sets. Suppose C1 ∩ C2 = ∅. Then there exists a hyperplane that separates C1

and C2.

Proof. Consider C := C1 − C2. Since C1 ∩ C2 = ∅, 0 /∈ C.
There are two cases:
Case (1): 0 ∈ C.
By the supporting hyperplane theorem, there exists a 6= 0 such that

〈a, x〉 ≤ 〈a, 0〉 = 0, for all x ∈ C

That is
〈a, x1〉 ≤ 〈a, x2〉

Case (2): 0 /∈ C
The result follows directly from the previous lemma.

In order to get strict separation, we need more assumptions.

Theorem:(Strict Hyperplane Separation) Let C1, C2 be nonempty, closed
convex sets with C1 ∩ C2 = ∅. Suppose at least one of the two sets is also
bounded. Then there exists a 6= 0 such that

sup
x1∈C1

〈a, x1〉 < inf
x2∈C2

〈a, x2〉
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Proof. Let C := C1−C2. Then C is a nonempty, closed convex set with 0 /∈ C.
Then there exists a 6= 0 such that

γ := sup
x∈C
〈a, x〉 < 0

Then for all x1 ∈ C1, x2 ∈ C2, we have 〈a, x1〉 ≤ γ + 〈a, x2〉. Then

sup
x1∈C1

〈a, x1〉 ≤ γ + inf
x2∈C2

〈a, x2〉 < inf
x2∈C2

〈a, x2〉
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