
1.4 Relative Interior

Consider I = [0, 1] ⊂ R. Then the interior of I is (0,1). However, if we consider
I as a subset in R2, then the interior of I is empty. This motivates the following
definition.

Definition:(Relative Interior) Let C ⊂ Rn. We say that x is a relative
interior point of C if B(x; ε)∩ aff(C) ⊂ C, for some ε > 0. The set of all relative
interior point of C is called the relative interior of C, and is denoted by ri(C).
The relative boundary of C is equal to C\ ri(C).

Lemma: Let ∆m be an m-simplex in Rn with m ≥ 1. Then ri(∆m) 6= ∅.

Proof. Let x0, ..., xm be the vertices of ∆m. Let

x :=
1

m+ 1

m∑
i=0

xi

Note that V := span{x1−x0, ..., xm−x0} is the m-dimensional subspace parallel
to aff(∆m) = aff({x0, ..., xm}).
Hence for all x ∈ V , there exists unique λi such that

x =

m∑
i=1

λi(xi − x0)

Let λ0 := −
∑m
i=1 λi, then (λ0, ..., λm) ∈ Rm+1 and

x =

m∑
i=0

λixi, with

m∑
i=0

λi = 0

Let L : V → Rm+1 be the mapping that sends x to (λ0, ..., λm). It is easy to
check that L is linear and thus continuous.
Hence there exists δ such that

||L(u)|| < 1

m+ 1
if ||u|| < δ

Let x ∈ (x+ B(0, δ)) ∩ aff(∆m) Then, x = x+ u, where ||u|| < δ.
Since x, x ∈ aff(∆m) and u = x− x, u ∈ V . Hence ||L(u)|| < 1

m+1 .

Suppose L(u) = (µ0, ..., µm), then u =
∑m
i=0 µixi and x =

∑m
i=0( 1

m+1 + µi)xi.

Since
∑m
i=0 µi = 0,

∑m
i=0( 1

m+1 + µi) = 1. Therefore, x ∈ ∆m.
Thus (x+ B(0; δ)) ∩ aff(∆m) ⊂ ∆m, so x ∈ ri(∆m).

Proposition: Let C be a nonempty convex set. Then ri(C) is nonempty.

Proof. Let m be the dimension of C.
If m = 0, then C must be a singleton. Hence ri(C) 6= ∅.
Suppose m ≥ 1. We first show that there exists m + 1 affinely independent
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elements x0, ..., xm ∈ C.
Let {x0, ..., xk} be a maximal affinely independent set in C.
Consider K := aff({x0, ..., xk}). K ⊆ aff(C) since {x0, ..., xk} ⊂ C.
Suppose y ∈ C but y /∈ K. Then, {x0, ..., xk, y} is also affinely independent,
which is a contradiction. Therefore C ⊆ K and hence aff(C) ⊆ K. Then

k = dim(K) = dim(aff(C)) = m

Therefore, there exists m+ 1 affinely independent elements x0, ..., xm ∈ C.
Let ∆m be the m-simplex formed by {x0, ..., xm}. By above, aff(∆m) = aff(C).
Since ri(∆m) is not empty, it follows that ri(C) is also nonempty.

The following is the most fundamental result about relative interiors.
Proposition:(Line Segment Principle) Let C be a nonempty convex set. If
x ∈ ri(C), x ∈ C, then λx+ (1− λ)x ∈ ri(C) for λ ∈ (0, 1].

Proof. Fix λ ∈ (0, 1]. Consider xλ = λx+ (1− λ)x.
Let L be the subspace parallel to aff(C). Define BL(0, ε) := {z ∈ L| ‖z‖ < ε}.
Since x ∈ C, for all ε > 0, we have x ∈ C +BL(0, ε). Then

B(xλ; ε) ∩ aff(C) = {λx+ (1− λ)x}+BL(0; ε)

⊂ {λx}+ (1− λ)C + (2− λ)BL(0; ε)

= (1− λ)C + λ

[
x+BL

(
0;

2− λ
λ

ε

)]
Since x ∈ ri(C), x+BL

(
0; 2−λ

λ ε

)
⊂ C, for sufficiently small ε.

So B(xλ; ε)∩ aff(C) ⊂ λC + (1− λ)C = C (since C is convex). Therefore, xλ ∈
ri(C).

Proposition:(Prolongation Lemma) Let C be a nonempty convex set. Then
we have

x ∈ ri(C)⇐⇒ ∀x ∈ C, ∃γ > 0 such that x+ γ(x− x) ∈ C.

In other words, x is a relative interior point iff every line segment in C having
x as one of the endpoints can be prolonged beyond x without leaving C.

Proof. Suppose the condition holds for x. Let x ∈ ri(C). If x = x, then we are
done. So assume x 6= x. Then there exists γ > 0 such that y = x+γ(x−x) ∈ C.
Hence x = 1

1+γ y+ γ
1+γx. Since x ∈ ri(C), y ∈ C, by the line segment principle,

we have x ∈ ri(C). The other direction is clear from the fact that x ∈ ri(C).

Next, we introduce some calculus rules related to the relative interior of convex
sets.

Proposition: Let C be a nonempty convex set. Then
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(a) C = ri(C).

(b) ri(C) = ri(C).

(c) Let D be another nonempty convex set. Then the following are equivalent:

(i) C and D have the same relative interior.

(ii) C and D have the same closure.

(iii) ri(C) ⊆ D ⊆ C.

Proof. (a) ri(C) ⊂ C since ri(C) ⊂ C. Conversely, suppose x ∈ C.
Let x ∈ ri(C). Consider xk = 1

kx+ (1− 1
k )x. By the line segment principle,

each xk ∈ ri(C). Also, xk → x. Therefore, x ∈ ri(C).

(b) Note that aff(C) = aff(C). Then by the definition of relative interior, ri(C) ⊆
ri(C). Now suppose x ∈ ri(C), we will show that x ∈ ri(C).
Pick x ∈ ri(C). We may assume x 6= x.
Then by the prolongation lemma, there exists γ > 0 such that

x+ γ(x− x) ∈ C

Then by the line segment principle and the fact that x ∈ ri(C),

x =
γ

γ + 1
x+

1

γ + 1
(x+ γ(x− x)) ∈ ri(C)

(c) Suppose ri(C)=ri(D), then ri(C) = ri(D). Hence C = D.
Suppose C = D, then ri(C)=ri(C)=ri(D)=ri(D).
Therefore (i) and (ii) are equivalent.
Suppose C = D, then

ri(C) = ri(D) ⊆ D ⊆ D = C

Suppose ri(C) ⊆ D ⊆ cl(C), then ri(C) ⊆ D ⊆ C.
Since ri(C) = C, ri(C) = D = ri(D).
Hence C = D and (ii),(iii) are equivalent.

Proposition: Let C1 and C2 be nonempty convex sets. We have

ri(C1) ∩ ri(C2) ⊆ ri(C1 ∩ C2), C1 ∩ C2 ⊆ C1 ∩ C2.

Furthermore, if ri(C1) ∩ ri(C2) 6= ∅, then

ri(C1) ∩ ri(C2) = ri(C1 ∩ C2), C1 ∩ C2 = C1 ∩ C2.
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Proof. Let x ∈ ri(C1) ∩ ri(C2), y ∈ C1 ∩ C2. By the prolongation lemma, the
line segment connecting x and y can be prolonged beyond x without leaving C1

and C2. Hence, by the prolongation lemma again, x ∈ ri(C1 ∩ C2).
Since C1 ∩ C2 ⊆ C1 ∩ C2, which is closed, we have C1 ∩ C2 ⊆ C1 ∩ C2.
Now suppose ri(C1) ∩ ri(C2) 6= ∅ and let x ∈ ri(C1) ∩ ri(C2) and y ∈ C1 ∩ C2.
Consider αk → 0 and yk = αkx+ (1− αk)y, then yk → y. By the line segment
property, yk ∈ ri(C1) ∩ ri(C2). Hence y ∈ ri(C1) ∩ ri(C2). Then

C1 ∩ C2 ⊆ ri(C1) ∩ ri(C2) ⊆ C1 ∩ C2.

Hence C1 ∩ C2 = C1 ∩C2. Moreover, the closure of ri(C1)∩ ri(C2) and C1 ∩C2

are the same. Hence, they have the same relative interior. Then

ri(C1 ∩ C2) = ri(ri(C1) ∩ ri(C2)) ⊆ ri(C1) ∩ ri(C2).

Proposition: Let B : Rn → Rp be an affine mapping and let Ω be a convex
subset of Rn. Then

B(ri Ω) = ri B(Ω).

Proof. Let y ∈ B(ri Ω), then there exits x ∈ ri Ω such that y = Bx. By the
prolongation lemma, for any x̄ ∈ Ω, there exists γ > 0 such that x+γ(x−x̄) ∈ Ω.
Hence y+γ(y−ȳ) = B(x+γ(x−x̄)) ∈ B(Ω), where ȳ = Bx̄. Since x̄ is arbitrary,
by the prolongation lemma again, y ∈ ri B(Ω). Hence B(ri Ω) ⊆ ri B(Ω).
To show the other direction, we first show that B(Ω) = B(ri Ω). Note that
Ω = ri Ω, hence we have

B(Ω) ⊆ B(Ω) = B(ri Ω) ⊆ B(ri Ω),

where the last inclusion follows from the continuity of B. This shows that
B(Ω) ⊆ B(ri Ω). Since B(ri Ω) ⊆ B(Ω), we have B(Ω) = B(ri Ω).
Now since B(Ω) = B(ri Ω), ri B(Ω) = ri B(ri Ω). Hence

ri B(Ω) = ri B(ri Ω) ⊆ B(ri Ω).
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