1.4 Relative Interior

Consider $I=[0,1] \subset \mathbb{R}$. Then the interior of I is $(0,1)$. However, if we consider I as a subset in \mathbb{R}^{2}, then the interior of I is empty. This motivates the following definition.

Definition:(Relative Interior) Let $C \subset \mathbb{R}^{n}$. We say that x is a relative interior point of C if $B(x ; \epsilon) \cap \operatorname{aff}(C) \subset C$, for some $\epsilon>0$. The set of all relative interior point of C is called the relative interior of C, and is denoted by ri (C). The relative boundary of C is equal to $\bar{C} \backslash \operatorname{ri}(C)$.

Lemma: Let Δ_{m} be an m-simplex in \mathbb{R}^{n} with $m \geq 1$. Then $\operatorname{ri}\left(\Delta_{m}\right) \neq \emptyset$.
Proof. Let x_{0}, \ldots, x_{m} be the vertices of Δ_{m}. Let

$$
\bar{x}:=\frac{1}{m+1} \sum_{i=0}^{m} x_{i}
$$

Note that $V:=\operatorname{span}\left\{x_{1}-x_{0}, \ldots, x_{m}-x_{0}\right\}$ is the m-dimensional subspace parallel to $\operatorname{aff}\left(\Delta_{m}\right)=\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)$.
Hence for all $x \in V$, there exists unique λ_{i} such that

$$
x=\sum_{i=1}^{m} \lambda_{i}\left(x_{i}-x_{0}\right)
$$

Let $\lambda_{0}:=-\sum_{i=1}^{m} \lambda_{i}$, then $\left(\lambda_{0}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m+1}$ and

$$
x=\sum_{i=0}^{m} \lambda_{i} x_{i}, \text { with } \sum_{i=0}^{m} \lambda_{i}=0
$$

Let $L: V \rightarrow \mathbb{R}^{m+1}$ be the mapping that sends x to $\left(\lambda_{0}, \ldots, \lambda_{m}\right)$. It is easy to check that L is linear and thus continuous.
Hence there exists δ such that

$$
\|L(u)\|<\frac{1}{m+1} \text { if }\|u\|<\delta
$$

Let $x \in(\bar{x}+B(0, \delta)) \cap \operatorname{aff}\left(\Delta_{m}\right)$ Then, $x=\bar{x}+u$, where $\|u\|<\delta$.
Since $x, \bar{x} \in \operatorname{aff}\left(\Delta_{m}\right)$ and $u=x-\bar{x}, u \in V$. Hence $\|L(u)\|<\frac{1}{m+1}$.
Suppose $L(u)=\left(\mu_{0}, \ldots, \mu_{m}\right)$, then $u=\sum_{i=0}^{m} \mu_{i} x_{i}$ and $x=\sum_{i=0}^{m}\left(\frac{1}{m+1}+\mu_{i}\right) x_{i}$.
Since $\sum_{i=0}^{m} \mu_{i}=0, \sum_{i=0}^{m}\left(\frac{1}{m+1}+\mu_{i}\right)=1$. Therefore, $x \in \Delta_{m}$.
Thus $(\bar{x}+B(0 ; \delta)) \cap \operatorname{aff}\left(\Delta_{m}\right) \subset \Delta_{m}$, so $\bar{x} \in \operatorname{ri}\left(\Delta_{m}\right)$.
Proposition: Let C be a nonempty convex set. Then ri (C) is nonempty.
Proof. Let m be the dimension of C.
If $m=0$, then C must be a singleton. Hence $\operatorname{ri}(C) \neq \emptyset$.
Suppose $m \geq 1$. We first show that there exists $m+1$ affinely independent
elements $x_{0}, \ldots, x_{m} \in C$.
Let $\left\{x_{0}, \ldots, x_{k}\right\}$ be a maximal affinely independent set in C.
Consider $K:=\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{k}\right\}\right) . K \subseteq \operatorname{aff}(C)$ since $\left\{x_{0}, \ldots, x_{k}\right\} \subset C$.
Suppose $y \in C$ but $y \notin K$. Then, $\left\{x_{0}, \ldots, x_{k}, y\right\}$ is also affinely independent, which is a contradiction. Therefore $C \subseteq K$ and hence $\operatorname{aff}(C) \subseteq K$. Then

$$
k=\operatorname{dim}(K)=\operatorname{dim}(\operatorname{aff}(C))=m
$$

Therefore, there exists $m+1$ affinely independent elements $x_{0}, \ldots, x_{m} \in C$.
Let Δ_{m} be the m-simplex formed by $\left\{x_{0}, \ldots, x_{m}\right\}$. By above, $\operatorname{aff}\left(\Delta_{m}\right)=\operatorname{aff}(C)$. Since $\operatorname{ri}\left(\Delta_{m}\right)$ is not empty, it follows that $\operatorname{ri}(C)$ is also nonempty.

The following is the most fundamental result about relative interiors.
Proposition:(Line Segment Principle) Let C be a nonempty convex set. If $x \in \operatorname{ri}(C), \bar{x} \in \bar{C}$, then $\lambda x+(1-\lambda) \bar{x} \in \operatorname{ri}(C)$ for $\lambda \in(0,1]$.

Proof. Fix $\lambda \in(0,1]$. Consider $x_{\lambda}=\lambda x+(1-\lambda) \bar{x}$.
Let L be the subspace parallel to aff (C). Define $B_{L}(0, \epsilon):=\{z \in L \mid\|z\|<\epsilon\}$.
Since $\bar{x} \in \bar{C}$, for all $\epsilon>0$, we have $\bar{x} \in C+B_{L}(0, \epsilon)$. Then

$$
\begin{aligned}
B\left(x_{\lambda} ; \epsilon\right) \cap \operatorname{aff}(C) & =\{\lambda x+(1-\lambda) \bar{x}\}+B_{L}(0 ; \epsilon) \\
& \subset\{\lambda x\}+(1-\lambda) C+(2-\lambda) B_{L}(0 ; \epsilon) \\
& =(1-\lambda) C+\lambda\left[x+B_{L}\left(0 ; \frac{2-\lambda}{\lambda} \epsilon\right)\right]
\end{aligned}
$$

Since $x \in \operatorname{ri}(C), x+B_{L}\left(0 ; \frac{2-\lambda}{\lambda} \epsilon\right) \subset C$, for sufficiently small ϵ.
So $B\left(x_{\lambda} ; \epsilon\right) \cap \operatorname{aff}(C) \subset \lambda C+(1-\lambda) C=C$ (since C is convex). Therefore, $x_{\lambda} \in$ $\operatorname{ri}(C)$.

Proposition:(Prolongation Lemma) Let C be a nonempty convex set. Then we have

$$
x \in \operatorname{ri}(C) \Longleftrightarrow \forall \bar{x} \in C, \exists \gamma>0 \text { such that } x+\gamma(x-\bar{x}) \in C
$$

In other words, x is a relative interior point iff every line segment in C having x as one of the endpoints can be prolonged beyond x without leaving C.

Proof. Suppose the condition holds for x. Let $\bar{x} \in \operatorname{ri}(C)$. If $x=\bar{x}$, then we are done. So assume $x \neq \bar{x}$. Then there exists $\gamma>0$ such that $y=x+\gamma(x-\bar{x}) \in C$. Hence $x=\frac{1}{1+\gamma} y+\frac{\gamma}{1+\gamma} \bar{x}$. Since $\bar{x} \in \operatorname{ri}(C), y \in C$, by the line segment principle, we have $x \in \operatorname{ri}(C)$. The other direction is clear from the fact that $x \in \operatorname{ri}(C)$.

Next, we introduce some calculus rules related to the relative interior of convex sets.

Proposition: Let C be a nonempty convex set. Then
(a) $\bar{C}=\overline{\operatorname{ri}(C)}$.
(b) $\operatorname{ri}(C)=\operatorname{ri}(\bar{C})$.
(c) Let D be another nonempty convex set. Then the following are equivalent:
(i) C and D have the same relative interior.
(ii) C and D have the same closure.
(iii) ri $(C) \subseteq D \subseteq \bar{C}$.

Proof. (a) $\overline{\operatorname{ri}(C)} \subset \bar{C}$ since ri $(C) \subset C$. Conversely, suppose $x \in \bar{C}$.
Let $\bar{x} \in \operatorname{ri}(C)$. Consider $x_{k}=\frac{1}{k} \bar{x}+\left(1-\frac{1}{k}\right) x$. By the line segment principle, each $x_{k} \in \operatorname{ri}(C)$. Also, $x_{k} \rightarrow x$. Therefore, $x \in \overline{\operatorname{ri}(C)}$.
(b) Note that $\operatorname{aff}(C)=\operatorname{aff}(\bar{C})$. Then by the definition of relative interior, $\operatorname{ri}(C) \subseteq$ $\operatorname{ri}(\bar{C})$. Now suppose $\bar{x} \in \operatorname{ri}(\bar{C})$, we will show that $\bar{x} \in \operatorname{ri}(C)$.
Pick $x \in \operatorname{ri}(C)$. We may assume $x \neq \bar{x}$.
Then by the prolongation lemma, there exists $\gamma>0$ such that

$$
\bar{x}+\gamma(\bar{x}-x) \in \bar{C}
$$

Then by the line segment principle and the fact that $x \in \operatorname{ri}(C)$,

$$
\bar{x}=\frac{\gamma}{\gamma+1} x+\frac{1}{\gamma+1}(\bar{x}+\gamma(\bar{x}-x)) \in \operatorname{ri}(C)
$$

(c) Suppose $\operatorname{ri}(C)=\operatorname{ri}(D)$, then $\overline{\operatorname{ri}(C)}=\overline{\operatorname{ri}(D)}$. Hence $\bar{C}=\bar{D}$.

Suppose $\bar{C}=\bar{D}$, then $\operatorname{ri}(C)=\operatorname{ri}(\bar{C})=\operatorname{ri}(\bar{D})=\operatorname{ri}(D)$.
Therefore (i) and (ii) are equivalent.
Suppose $\bar{C}=\bar{D}$, then

$$
\operatorname{ri}(C)=\operatorname{ri}(D) \subseteq D \subseteq \bar{D}=\bar{C}
$$

Suppose $\overline{\mathrm{ri}}(C) \subseteq D \subseteq \operatorname{cl}(C)$, then $\overline{\mathrm{ri}(C)} \subseteq \bar{D} \subseteq \bar{C}$.
Since $\overline{\operatorname{ri}(C)}=\bar{C}, \overline{\operatorname{ri}(C)}=\bar{D}=\overline{\operatorname{ri}(D)}$.
Hence $\bar{C}=\bar{D}$ and (ii),(iii) are equivalent.

Proposition: Let C_{1} and C_{2} be nonempty convex sets. We have

$$
\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right) \subseteq \operatorname{ri}\left(C_{1} \cap C_{2}\right), \overline{C_{1} \cap C_{2}} \subseteq \overline{C_{1}} \cap \overline{C_{2}} .
$$

Furthermore, if $\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right) \neq \emptyset$, then

$$
\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)=\operatorname{ri}\left(C_{1} \cap C_{2}\right), \overline{C_{1} \cap C_{2}}=\overline{C_{1}} \cap \overline{C_{2}} .
$$

Proof. Let $x \in \operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right), y \in C_{1} \cap C_{2}$. By the prolongation lemma, the line segment connecting x and y can be prolonged beyond x without leaving C_{1} and C_{2}. Hence, by the prolongation lemma again, $x \in \operatorname{ri}\left(C_{1} \cap C_{2}\right)$.
Since $C_{1} \cap C_{2} \subseteq \overline{C_{1}} \cap \overline{C_{2}}$, which is closed, we have $\overline{C_{1} \cap C_{2}} \subseteq \overline{C_{1}} \cap \overline{C_{2}}$.
Now suppose $\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right) \neq \emptyset$ and let $x \in \operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)$ and $y \in \overline{C_{1}} \cap \overline{C_{2}}$. Consider $\alpha_{k} \rightarrow 0$ and $y_{k}=\alpha_{k} x+\left(1-\alpha_{k}\right) y$, then $y_{k} \rightarrow y$. By the line segment property, $y_{k} \in \operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)$. Hence $y \in \overline{\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)}$. Then

$$
\overline{C_{1}} \cap \overline{C_{2}} \subseteq \overline{\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)} \subseteq \overline{C_{1} \cap C_{2}} .
$$

Hence $\overline{C_{1} \cap C_{2}}=\overline{C_{1}} \cap \overline{C_{2}}$. Moreover, the closure of $\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)$ and $C_{1} \cap C_{2}$ are the same. Hence, they have the same relative interior. Then

$$
\operatorname{ri}\left(C_{1} \cap C_{2}\right)=\operatorname{ri}\left(\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)\right) \subseteq \operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)
$$

Proposition: Let $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be an affine mapping and let Ω be a convex subset of \mathbb{R}^{n}. Then

$$
B(\text { ri } \Omega)=\operatorname{ri} B(\Omega)
$$

Proof. Let $y \in B($ ri $\Omega)$, then there exits $x \in$ ri Ω such that $y=B x$. By the prolongation lemma, for any $\bar{x} \in \Omega$, there exists $\gamma>0$ such that $x+\gamma(x-\bar{x}) \in \Omega$. Hence $y+\gamma(y-\bar{y})=B(x+\gamma(x-\bar{x})) \in B(\Omega)$, where $\bar{y}=B \bar{x}$. Since \bar{x} is arbitrary, by the prolongation lemma again, $y \in$ ri $B(\Omega)$. Hence $B($ ri $\Omega) \subseteq$ ri $B(\Omega)$.
To show the other direction, we first show that $\overline{B(\Omega)}=\overline{B(\text { ri } \Omega)}$. Note that $\bar{\Omega}=\overline{\operatorname{ri} \Omega}$, hence we have

$$
B(\Omega) \subseteq B(\bar{\Omega})=B(\overline{\operatorname{ri} \Omega}) \subseteq \overline{B(\operatorname{ri} \Omega)}
$$

where the last inclusion follows from the continuity of B. This shows that $\overline{B(\Omega)} \subseteq \overline{B(\text { ri } \Omega)}$. Since $\overline{B(\text { ri } \Omega)} \subseteq \overline{B(\Omega)}$, we have $\overline{B(\Omega)}=\overline{B(\text { ri } \Omega)}$. Now since $\overline{B(\Omega)}=\overline{B(\text { ri } \Omega)}$, ri $B(\Omega)=$ ri $B($ ri $\Omega)$. Hence

$$
\text { ri } B(\Omega)=\operatorname{ri} B(\text { ri } \Omega) \subseteq B(\text { ri } \Omega)
$$

