
1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take val-
ues in R := (−∞,∞], with the convention that a+∞ =∞ ∀a ∈ R,∞+∞ =∞,
and t · ∞ =∞ ∀t > 0.

1.3.1 Convex Functions

Definition:(Convex Functions) Let C be a convex subset of Rn. A function
f : C → R is called convex on C if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)y,∀x, y ∈ C, ∀λ ∈ [0, 1].

A function is called stricly convex if the inequality above is strict for all x, y ∈ C
with x 6= y, and all λ ∈ (0, 1). A function is called concave if (−f) is convex.

Figure 1: Convex Function

1.3.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable
functions.
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Proposition: Let C be a nonempty convex open set. Let f : Rn → R be
differentiable over an open set that contains C.

(a) f is convex if and only if f(z) ≥ f(x) + 〈∇f(x), (z − x)〉, for all x, z ∈ C.

(b) f is stricly convex if and only if the above inequality is strict for x 6= z.

Proof. (⇐= ) Let x, y ∈ C, λ ∈ [0, 1] and z = λx+ (1− λ)y. We have,

f(x) ≥ f(z) + 〈∇f(z), (x− z)〉

f(y) ≥ f(z) + 〈∇f(z), (y − z)〉.

Then,

λf(x)+(1−λ)f(y) ≥ f(z)+〈∇f(z), λ(x−z)+(1−λ)(y−z)〉 = f(z) = f(λx+(1−λ)y)

Hence f is convex.
Conversely, suppose f is convex. For x 6= z, define g : (0, 1]→ R by

g(t) =
f(x+ t(z − x))− f(x)

t
.

Consider t1, t2 with 0 < t1 < t2 < 1. Let t = t1
t2

and z = x + t2(z − x). Then

f(x+ t(z − x)) ≤ tf(z) + (1− t)f(x). So,

f(x+ t(z − x))− f(x)

t
≤ f(z)− f(x).

Therefore,

f(x+ t1(z − x))− f(x)

t1
≤ f(x+ t2(z − x))− f(x)

t2
.

So, g(t1) ≤ g(t2), that is, g is monotonically increasing.
Then 〈∇f(x), (z − x)〉 = limt↓0 g(t) ≤ g(1) = f(z)− f(x). So we are done.
The proof for (b) is the same as (a), we just change all inequality to strict
inequality.

For twice differentiable functions, we have the following characterization.
Proposition: Let C be a nonempty convex set ⊂ Rn and f : Rn → R be twice
continuously differentiable over an open set that contains C. Then:

(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex over C.

(c) If C is open and f is convex over C, then ∇2f(x) is positive semidefinite
for all x ∈ C.
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Proof. (a) For all x, y ∈ C,

f(y) = f(x) + 〈∇f(x), (y − x)〉+
1

2
(y − x)T∇2f(x+ α(y − x))(y − x)

for some α ∈ [0, 1]. Since ∇2f is positive semidefinite, we have

f(y) ≥ f(x) + 〈∇f(x), (y − x)〉,∀x, y ∈ C.

Hence, f is convex over C.
(b) We have f(y) > f(x) + 〈∇f(x), (y − x)〉 for all x.y ∈ C with x 6= y since
∇2f is positive definite.
(c) Assume there exist x ∈ C and z ∈ Rn such that zT∇2f(x)z < 0. For z
with sufficiently small norm, we have x + z ∈ C and zT∇2f(x + αz)z < 0 for
all α ∈ [0, 1]. Then

f(x+ z) = f(x) + 〈∇f(x), z〉+ zT∇2f(x+ αz)z < f(x) + 〈∇f(x), z〉.

This contradicts the convexity of f over C. Hence, ∇2f is indeed positive
semidefinite over C.
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