1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take val-
ues in R := (—o0, 00|, with the convention that a4+o00 = 0o Va € R, co+00 = 00,
and t- 0o = o0 Vt > 0.

1.3.1 Convex Functions

Definition:(Convex Functions) Let C be a convex subset of R". A function
f:C — Ris called convex on C if

fOz 4+ (1 =Ny) < Af(z)+ (1= Ny, Va,y € C,VA € [0,1].

A function is called stricly convez if the inequality above is strict for all z,y € C
with « # y, and all A € (0,1). A function is called concave if (—f) is convex.
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Figure 1: Convex Function

1.3.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable
functions.



Proposition: Let C be a nonempty convex open set. Let f : R" — R be
differentiable over an open set that contains C.

(a) fis convex if and only if f(z) > f(z) + (Vf(x),(z — x)), for all z,z € C.
(b) f is stricly convex if and only if the above inequality is strict for « # z.

Proof. (=) Let z,y € C, A€ [0,1] and z = Az + (1 — A)y. We have,
f(@) = f(2) +(Vf(2), (z = 2))
@) = f(2) +(VF(2), (y — 2)).
Then,
Af(@)+(1=N)f(y) = f(2)H(Vf(2), Mz—2)+(1-N)(y—2)) = f(2) = fAz+(1-N)y)

Hence f is convex.
Conversely, suppose f is convex. For x # z, define g : (0,1] — R by

flw -+t~ ) = ()
t

g(t) =

Consider tq,ty with 0 < t; < to < 1. Let t = % and Z = x + t2(z — x). Then
Fa+ 1z — ) <FF() + (1 - Df (). So,
flz+1z—2)) - f(z)

_ < 1(2) - (@),

Therefore,

flatti(z—2)) — flz) _ flz+ta(z—2)) ~ flz)
tl B t2

So, g(t1) < g(t2), that is, g is monotonically increasing.

Then (Vf(x),(z —x)) = limy 0 g(t) < g(1) = f(2) — f(z). So we are done.
The proof for (b) is the same as (a), we just change all inequality to strict
inequality. O

For twice differentiable functions, we have the following characterization.
Proposition: Let C' be a nonempty convex set C R” and f : R™ — R be twice
continuously differentiable over an open set that contains C. Then:

(a) If V2 f(z) is positive semidefinite for all € C, then f is convex over C.
(b) If V2f(x) is positive definite for all x € C, then f is strictly convex over C.

(c) If C is open and f is convex over C, then V2f(z) is positive semidefinite
for all x € C.



Proof. (a) For all z,y € C,

Fly) = (@) + (VI @), (g~ ) + 50— ) V2 + aly — 2))y — )
for some a € [0, 1]. Since V2f is positive semidefinite, we have

fly) > flx) +(Vf(z),(y —x)),Vr,y e C.

Hence, f is convex over C.

(b) We have f(y) > f(z) + (Vf(x),(y —x)) for all z.y € C with x # y since
V2 is positive definite.

(c) Assume there exist € C' and z € R™ such that 27 V2f(z)z < 0. For 2z
with sufficiently small norm, we have x + 2z € C and 2TV2f(x + az)z < 0 for
all @ € [0,1]. Then

fl@+2)=fx)+ (Vf(z),2) + 2" V2f(x +az)z < f(z) + (Vf(2),2).

This contradicts the convexity of f over C. Hence, V2f is indeed positive
semidefinite over C. O



