1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take values in $\overline{\mathbb{R}}:=(-\infty, \infty]$, with the convention that $a+\infty=\infty \forall a \in \mathbb{R}, \infty+\infty=\infty$, and $t \cdot \infty=\infty \forall t>0$.

1.3.1 Convex Functions

Definition:(Convex Functions) Let C be a convex subset of \mathbb{R}^{n}. A function $f: C \rightarrow \overline{\mathbb{R}}$ is called convex on C if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) y, \forall x, y \in C, \forall \lambda \in[0,1]
$$

A function is called stricly convex if the inequality above is strict for all $x, y \in C$ with $x \neq y$, and all $\lambda \in(0,1)$. A function is called concave if $(-f)$ is convex.

Figure 1: Convex Function

1.3.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable functions.

Proposition: Let C be a nonempty convex open set. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable over an open set that contains C.
(a) f is convex if and only if $f(z) \geq f(x)+\langle\nabla f(x),(z-x)\rangle$, for all $x, z \in C$.
(b) f is stricly convex if and only if the above inequality is strict for $x \neq z$.

Proof. (\Longleftarrow) Let $x, y \in C, \lambda \in[0,1]$ and $z=\lambda x+(1-\lambda) y$. We have,

$$
\begin{aligned}
& f(x) \geq f(z)+\langle\nabla f(z),(x-z)\rangle \\
& f(y) \geq f(z)+\langle\nabla f(z),(y-z)\rangle
\end{aligned}
$$

Then,
$\lambda f(x)+(1-\lambda) f(y) \geq f(z)+\langle\nabla f(z), \lambda(x-z)+(1-\lambda)(y-z)\rangle=f(z)=f(\lambda x+(1-\lambda) y)$
Hence f is convex.
Conversely, suppose f is convex. For $x \neq z$, define $g:(0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=\frac{f(x+t(z-x))-f(x)}{t}
$$

Consider t_{1}, t_{2} with $0<t_{1}<t_{2}<1$. Let $\bar{t}=\frac{t_{1}}{t_{2}}$ and $\bar{z}=x+t_{2}(z-x)$. Then $f(x+\bar{t}(\bar{z}-x)) \leq \bar{t} f(\bar{z})+(1-\bar{t}) f(x)$. So,

$$
\frac{f(x+\bar{t}(\bar{z}-x))-f(x)}{\bar{t}} \leq f(\bar{z})-f(x)
$$

Therefore,

$$
\frac{f\left(x+t_{1}(z-x)\right)-f(x)}{t_{1}} \leq \frac{f\left(x+t_{2}(z-x)\right)-f(x)}{t_{2}}
$$

So, $g\left(t_{1}\right) \leq g\left(t_{2}\right)$, that is, g is monotonically increasing.
Then $\langle\nabla f(x),(z-x)\rangle=\lim _{t \downarrow 0} g(t) \leq g(1)=f(z)-f(x)$. So we are done.
The proof for (b) is the same as (a), we just change all inequality to strict inequality.

For twice differentiable functions, we have the following characterization.
Proposition: Let C be a nonempty convex set $\subset \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable over an open set that contains C. Then:
(a) If $\nabla^{2} f(x)$ is positive semidefinite for all $x \in C$, then f is convex over C.
(b) If $\nabla^{2} f(x)$ is positive definite for all $x \in C$, then f is strictly convex over C.
(c) If C is open and f is convex over C, then $\nabla^{2} f(x)$ is positive semidefinite for all $x \in C$.

Proof. (a) For all $x, y \in C$,

$$
f(y)=f(x)+\langle\nabla f(x),(y-x)\rangle+\frac{1}{2}(y-x)^{T} \nabla^{2} f(x+\alpha(y-x))(y-x)
$$

for some $\alpha \in[0,1]$. Since $\nabla^{2} f$ is positive semidefinite, we have

$$
f(y) \geq f(x)+\langle\nabla f(x),(y-x)\rangle, \forall x, y \in C .
$$

Hence, f is convex over C.
(b) We have $f(y)>f(x)+\langle\nabla f(x),(y-x)\rangle$ for all $x . y \in C$ with $x \neq y$ since $\nabla^{2} f$ is positive definite.
(c) Assume there exist $x \in C$ and $z \in \mathbb{R}^{n}$ such that $z^{T} \nabla^{2} f(x) z<0$. For z with sufficiently small norm, we have $x+z \in C$ and $z^{T} \nabla^{2} f(x+\alpha z) z<0$ for all $\alpha \in[0,1]$. Then

$$
f(x+z)=f(x)+\langle\nabla f(x), z\rangle+z^{T} \nabla^{2} f(x+\alpha z) z<f(x)+\langle\nabla f(x), z\rangle
$$

This contradicts the convexity of f over C. Hence, $\nabla^{2} f$ is indeed positive semidefinite over C.

