1.2.2 Affine Sets and Affine Hull

Given $a, b \in \mathbb{R}^{n}$, the line connecting them is defined as

$$
\mathcal{L}[a, b]:=\{\lambda a+(1-\lambda) b \mid \lambda \in \mathbb{R}\}
$$

Note that there is no restriction on λ.

Definition:(Affine Set) A subset S of \mathbb{R}^{n} is affine if for any $a, b \in S$, we have $\mathcal{L}[a, b] \subseteq S$.

Definition:(Affine Combination)

Given $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$, an element in the form $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$, where $\sum_{i=1}^{m} \lambda_{i}=$ 1 is called an affine combination of x_{1}, \ldots, x_{m}.

Proposition: A set S is affine if and only if it contains all affine combination of its elements.

Definition:(Affine Hull) The affine hull of a set $X \subseteq \mathbb{R}^{n}$ is

$$
\operatorname{aff}(X):=\bigcap\{S \mid S \text { is affine and } X \subseteq S\}
$$

Proposition: For any subset X of \mathbb{R}^{n},

$$
\operatorname{aff}(X)=\left\{\sum_{i=1}^{m} \lambda_{i} x_{i} \mid \sum_{i=1}^{m} \lambda_{i}=1, x_{i} \in X\right\}
$$

In fact, an affine set $S \subset \mathbb{R}^{n}$ is of the form $x+V$, where $x \in S$ and V is a vector space called the subspace parallel to S.

Lemma: Let S be nonempty. Then the following are equivalent:

1. S is affine
2. S is of the form $x+V$ for some subspace $V \subset \mathbb{R}^{n}$ and $x \in S$.

Also, V is unique and equals to $S-S$.
Proof. Suppose S is affine. We first assume $0 \in S$. Let $x \in S$ and $\gamma \in \mathbb{R}$. Since $0 \in S$, we have $\gamma x+(1-\gamma) 0=\gamma x \in S$. Now, suppose $x, y \in S$. Then $x+y=$ $2\left(\frac{1}{2} x+\frac{1}{2} y\right) \in S$. Hence, S is closed under addition and scalar multiplication. Therefore, $S=0+S$ is a linear subspace. If $0 \notin S$, then $0 \in S-x$ for any $x \in S$. So $S-x$ is a linear subspace. Therefore, $S=x+V$.
The other direction is simple, just use the fact that V is a linear subspace.
Now suppose $S=x_{1}+V_{1}=x_{2}+V_{2}$, where $x_{1}, x_{2} \in S, V_{1}, V_{2}$ are linear

Figure 1: Affine hull and the parallel subspace
subspaces. Then $x_{1}-x_{2}+V_{1}=V_{2}$. Since V_{2} is a subspace, $x_{1}-x_{2} \in V_{1}$. So $V_{2}=x_{1}-x_{2}+V_{1} \subseteq V_{1}$. Similarly, $V_{1} \subseteq V_{2}$. Therefore V is unique.
Since $S=x+V$, so $V=S-x \subseteq S-S$. Let $u, v \in S$ and $z=u-v$. Then $S-v=V$ by the uniqueness of V. So $z \in S-v=V$ and hence $S-S \subseteq V$.

Definition:(Dimension of affine and convex sets) The dimension of aff(X) is defined to be the dimension of the subspace parallel to X. The dimension of a convex set C is defined to be the dimension of aff (C).

Definition:(Affinely Independent) $x_{0}, \ldots, x_{m} \in \mathbb{R}^{n}$ are affinely independent if

$$
\left[\sum \lambda_{i} x_{i}=0, \quad \sum \lambda_{i}=0\right] \Longrightarrow\left[\lambda_{i}=0 \text { for all } i\right]
$$

Proposition: $x_{0}, \ldots, x_{m} \in \mathbb{R}^{n}$ are affinely independent if and only if $x_{1}-$ $x_{0}, \ldots, x_{m}-x_{0}$ are linearly independent.

Proof. Suppose x_{0}, \ldots, x_{m} are affinely independent. Suppose

$$
\sum_{i=1}^{m} \lambda_{i}\left(x_{i}-x_{0}\right)=0
$$

Let $\lambda_{0}:=-\sum_{i=1}^{m} \lambda_{i}$, then we have

$$
\lambda_{0} x_{0}+\sum_{i=1}^{m} \lambda_{i} x_{i}=0
$$

Since $\sum_{i=0}^{m} \lambda_{i}=0, \lambda_{i}=0$ for all i. Hence, $x_{1}-x_{0}, \ldots, x_{m}-x_{0}$ are linearly independent.
The converse follows directly from the definition
Lemma: Let $S:=\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)$, where $x_{i} \in \mathbb{R}^{n}$. Then $\operatorname{span}\left\{x_{1}-x_{0}, \ldots, x_{m}-\right.$ $\left.x_{0}\right\}$ is the subspace parallel to S.

Proof. Let V be the subspace parallel to S. Then $S-x_{0}=V$.
Hence $\operatorname{span}\left\{x_{1}-x_{0}, \ldots, x_{m}-x_{0}\right\} \subseteq V$.
Let $x \in V$, then $x+x_{0} \in S$. So

$$
x+x_{0}=\sum_{i=0}^{m} \lambda_{i} x_{i}, \text { where } \sum \lambda_{i}=1
$$

Therefore

$$
x=\sum_{i=1}^{m} \lambda_{i}\left(x_{i}-x_{0}\right) \in \operatorname{span}\left\{x_{1}-x_{0}, x_{m}-x_{0}\right\}
$$

Proposition: x_{0}, \ldots, x_{m} are affinely independent in \mathbb{R}^{n} if and only if its affine hull is m-dimensional.

Proof. Suppose x_{0}, \ldots, x_{m} are affinely independent. Then $x_{1}-x_{0}, \ldots, x_{m}-x_{0}$ are linearly independent. Therefore, $V=\operatorname{span}\left\{x_{1}-x_{0}, \ldots, x_{m}-x_{0}\right\}$ is m dimensional. Since V is the subspace parallel to $\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)$, $\operatorname{aff}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)$ is m -dimensional.
The converse is proven similarly.
Definition:(m-Simplex)Let x_{0}, \ldots, x_{m} be affinely independent in \mathbb{R}^{n}. Then the set

$$
\Delta_{m}:=\operatorname{conv}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)
$$

is called a m-simplex in \mathbb{R}^{n} with vertices x_{i}.
Proposition: Consider a m-simplex Δ_{m} with vertices x_{0}, \ldots, x_{m}. For every $x \in \Delta_{m}$, there is a unique element $\left(\lambda_{0}, \ldots, \lambda_{m}\right) \in \mathbb{R}_{+}^{m+1}$ such that

$$
x=\sum \lambda_{i} x_{i}, \quad \sum \lambda_{i}=1
$$

Proof. The existence follows directly from the definition. We only need to show the uniqueness.
Suppose $\left(\lambda_{0}, \ldots, \lambda_{m}\right),\left(\mu_{0}, \ldots, \mu_{m}\right) \in \mathbb{R}_{+}^{m+1}$ satisfy

$$
x=\sum \lambda_{i} x_{i}=\sum \mu_{i} x_{i}, \quad \sum \lambda_{i}=\sum \mu_{i}=1
$$

Then

$$
\sum\left(\lambda_{i}-\mu_{i}\right) x_{i}=0, \quad \sum\left(\lambda_{i}-\mu_{i}\right)=0
$$

Since x_{0}, \ldots, x_{m} are affinely independent, $\lambda_{i}-\mu_{i}=0$ for all i.

Figure 2: Examples of m-simplex

Definition: The cone generated by a set X is the set of all nonnegative combination of elements in X. A nonnegative (positive) combination of $x_{1}, x_{2}, \ldots, x_{m}$ is of the form

$$
\sum_{i=1}^{m} \lambda_{i} x_{i}, \text { where } \lambda_{i} \geq 0\left(\lambda_{i}>0\right)
$$

Next, we prove a important theorem concerning convex hulls.
Theorem:(Caratheodory's Theorem) Let X be a nonempty subset of \mathbb{R}^{n}.
(a) Every nonzero vector of cone (X) can be represented as a positive combination of linearly independent vectors from X.
(b) Every vector from conv (X) can be represented as a convex combination of at most $n+1$ vectors from X.

Proof. (a) Let $x \in \operatorname{cone}(X)$ and $x \neq 0$. Suppose m is the smallest integer such that x is of the form $\sum_{i=1}^{m} \lambda_{i} x_{i}$, where $\lambda_{i}>0$ and $x_{i} \in X$. Suppose that x_{i} are not linearly independent. Therefore, there exist μ_{i} with at least one μ_{i} positive, such that $\sum_{i=1}^{m} \mu_{i} x_{i}=0$. Consider $\bar{\gamma}$, the largest γ such that $\lambda_{i}-\gamma \mu_{i} \geq 0$ for all i. Then $\sum_{i=1}^{m}\left(\lambda_{i}-\bar{\gamma} \mu\right) x_{i}$ is a representation of x as a positive combination of less than m vectors, contradiction. Hence, x_{i} are linearly independent.
(b) Consider $Y=\{(x, 1): x \in X\}$. Let $x \in \operatorname{conv}(X)$. Then $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$, where $\sum_{i=1}^{m} \lambda_{i}=1$, so $(x, 1) \in \operatorname{cone}(Y)$.
By $(\mathrm{a}),(x, 1)=\sum_{i=1}^{l} \lambda_{i}^{\prime}\left(x_{i}, 1\right)$, where $\lambda_{i}>0$. Also, $\left(x_{1}, 1\right), \ldots,\left(x_{l}, 1\right)$ are linearly independent vectors in \mathbb{R}^{n+1} (at most $n+1$). Hence, $x=\sum_{i=1}^{l} \lambda_{i}^{\prime} x_{i}, \sum_{i=1}^{m} \lambda_{i}^{\prime}=$ 1

Proposition: Let $X \subseteq \mathbb{R}^{n}$ be a compact set. Then $\operatorname{conv}(X)$ is compact.
Proof. Let $\left\{x^{k}\right\}$ be a sequence in $\operatorname{conv}(X)$. By Caratheodory's Theorem,

$$
x^{k}=\sum_{i=1}^{n+1} \lambda_{i}^{k} x_{i}^{k}
$$

where $\lambda_{i}^{k} \geq 0, x_{i}^{k} \in X$ and $\sum_{i=1}^{n+1} \lambda_{i}^{k}=1$.
Note that the sequence $\left\{\left(\lambda_{1}^{k}, \ldots, \lambda_{n+1}^{k}, x_{1}^{k}, \ldots, x_{n+1}^{k}\right)\right\}$ is bounded. Then it has a limit point $\left(\lambda_{1}, \ldots, \lambda_{n+1}, x_{1}, \ldots, x_{n+1}\right)$, where $\sum_{i=1}^{n+1} \lambda_{i}=1$ and $x_{i} \in X$.
Hence $\sum_{i=1}^{n+1} \lambda_{i} x_{i} \in \operatorname{conv}(X)$ is a limit point of the sequence x^{k}.
Therefore, $\operatorname{conv}(X)$ is compact.

1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take values in $\overline{\mathbb{R}}:=(-\infty, \infty]$, with the convention that $a+\infty=\infty \forall a \in \mathbb{R}, \infty+\infty=\infty$, and $t \cdot \infty=\infty \forall t>0$.

1.3.1 Convex Functions

Definition:(Convex Functions) Let C be a convex subset of \mathbb{R}^{n}. A function $f: C \rightarrow \overline{\mathbb{R}}$ is called convex on C if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) y, \forall x, y \in C, \forall \lambda \in[0,1] .
$$

A function is called stricly convex if the inequality above is strict for all $x, y \in C$ with $x \neq y$, and all $\lambda \in(0,1)$. A function is called concave if $(-f)$ is convex.

Definition:(Level Sets) For a function $f: C \rightarrow \mathbb{R}$, we define the level sets of f to be $\{x \mid f(x) \leq \lambda\}$.

If a function is convex, then all its level sets are also convex (Exercise).

Figure 3: Convex Function

However, the convexity of all level sets of a function does not necessarily imply the convexity of the function itself.

Examples of Convex Functions

The following functions are convex:
(a) $f(x):=\langle a, x\rangle+b$ for $x \in \mathbb{R}^{n}$, where $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
(b) $g(x):=\|x\|$ for $x \in \mathbb{R}^{n}$.
(c) $h(x):=x^{2}$ for $x \in \mathbb{R}$.
(d) $F(x):=\frac{1}{2} x^{T} A x$ for $x \in \mathbb{R}^{n}$, where A is a $n \times n$ symmetric positive semidefinite matrix. (i.e. $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$)

Definition:(Epigraph and Effective Domain)

The epigraph of a function $f: X \rightarrow[-\infty, \infty]$, where $X \subset \mathbb{R}^{n}$, is given by

$$
\operatorname{epi} f=\{(x, w) \mid x \in X, w \in \mathbb{R}, f(x) \leqslant w\}
$$

The effective domain of f is given by

$$
\operatorname{dom} f=\{x \mid f(x)<\infty\}
$$

Note that $\operatorname{dom} f$ is just the projection of epi f on \mathbb{R}^{n}.

Definition:(Proper Function)

A function f is proper if $f(x)<\infty$ for at least one $x \in X . f$ is improper if it is not proper. By considering epif, f is proper means that epif is not empty and does not contain any vertical line.

Theorem:(Jensen inequality)

A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex if and only if for any $\lambda_{i} \geq 0$ with $\sum \lambda_{i}=1$ and for any elements $x_{i} \in \mathbb{R}^{n}$, it holds that

$$
f\left(\sum \lambda_{i} x_{i}\right) \leq \sum \lambda_{i} f\left(x_{i}\right)
$$

Proof. It suffices to prove that any convex function satisfies the Jensen inequality. We will prove this by induction.
The case $m=1,2$ are simple. So suppose the inequality holds for all $k \leq m$.
Suppose $\lambda_{i} \geq 0$ satisfies $\sum_{i=1}^{m+1} \lambda_{i}=1$. Then $\sum_{i=1}^{m} \lambda_{i}=1-\lambda_{m+1}$.
If $\lambda_{m+1}=1$, then $\lambda_{i}=0$ for all i. Then the inequality holds.
So suppose $\lambda_{m+1}<1$. Then

$$
\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}}=1
$$

and

$$
\begin{aligned}
f\left(\sum_{i=1}^{m+1} \lambda_{i} x_{i}\right) & =f\left(\left(1-\lambda_{m+1}\right) \sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} x_{i}+\lambda_{m+1} x_{m+1}\right) \\
& \leq\left(1-\lambda_{m+1}\right) f\left(\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} x_{i}\right)+\lambda_{m+1} f\left(x_{m+1}\right) \\
& \leq\left(1-\lambda_{m+1}\right) \sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} f\left(x_{i}\right)+\lambda_{m+1} x_{m+1} \\
& =\sum_{i=1}^{m+1} \lambda_{i} f\left(x_{i}\right)
\end{aligned}
$$

The following gives a geometric characterization of convexity.
Proposition: A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex if and only if epi $f \subset \mathbb{R}^{n+1}$ is convex.

Proof. Assume f is convex. Let $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in \operatorname{epi} f$ and $\lambda \in[0,1]$. Then

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \leq \lambda t_{1}+(1-\lambda) t_{2}
$$

Hence $\left(\lambda\left(x_{1}, t_{1}\right)+(1-\lambda)\left(x_{2}, t_{2}\right) \in \operatorname{epi} f\right.$.
Conversely, suppose epi f is convex. Let $x_{1}, x_{2} \in \operatorname{dom} f$ and $\lambda \in[0,1]$.
Since epi f is convex, $\lambda\left(x_{1}, f\left(x_{1}\right)\right)+(1-\lambda)\left(x_{2}, f\left(x_{2}\right)\right) \in \operatorname{epi} f$. Then

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

Therefore, f is convex.
Definition:(Closed function) If the epigragh of a function $f: X \rightarrow \overline{\mathbb{R}}$ is closed, we say that f is a closed function.

For example, the indicator funtion δ_{X} is convex if and only if X is convex, is closed if and only if X is closed, where

$$
\delta_{X}(x):= \begin{cases}0 & x \in X \\ \infty & \text { otherwise }\end{cases}
$$

In fact, closedness is related to the concept of lower semicontinuity. Recall that a function f is called lower semicontinuous at $x \in X$ if

$$
f(x) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right)
$$

for every sequence $\left\{x_{k}\right\} \subset X$ with $x \rightarrow x_{k} . f$ is lower semicontinuous if it is lower semicontinuous at each $x \in X . f$ is upper semicontinuous if $-f$ is lower semicontinuous.

Proposition: Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a function, then the following are equivalent:
(i) The level set $V_{\gamma}=\{x \mid f(x) \leq \gamma\}$ is closed for every γ.
(ii) f is lower semicontinuous.
(iii) epif is closed.

Proof. If $f(x)=\infty$ for all x, then the result holds. So assume $f(x)<\infty$ for some $x \in \mathbb{R}^{n}$. Therefore, epi f is nonempty and there exists level sets of f that are nonempty.
(i) \Longrightarrow (ii). Assume V_{γ} is closed for every γ. Suppose f is not lower semicontinuous, that is

$$
f(x)>\liminf _{k \rightarrow \infty} f\left(x_{k}\right)
$$

for some x and sequence $\left\{x_{k}\right\}$ converging to x. Let γ satisfies

$$
f(x)>\gamma>\liminf _{k \rightarrow \infty} f\left(x_{k}\right)
$$

Hence, there exists a subsequence $\left\{x_{k_{i}}\right\}$ such that $f\left(x_{k_{i}}\right) \leq \gamma$ for all i. So, $\left\{x_{k_{i}}\right\} \subset V_{\gamma}$. But V_{γ} is closed, x also belongs to V_{γ}. Therefore, $f(x) \leq \gamma$, contradiction.
(ii) \Longrightarrow (iii). Assume f is lower semicontinuous. Let (x, w) be the limit of $\left\{\left(x_{k}, w_{k}\right)\right\} \subset \operatorname{epi}(f)$. We have $f\left(x_{k}\right) \leq w_{k}$ for all k. Since f is lower semicontinuous, taking limit we have,

$$
f(x) \leq \liminf _{k \rightarrow \infty} f\left(x_{k}\right) \leq w
$$

Hence $(x, w) \in$ epi f and so epi f is closed.
(iii) \Longrightarrow (i). Assume epif is closed. Let $\left\{x_{k}\right\}$ be a sequence in V_{γ} converging to x for some γ. We have $f\left(x_{k}\right) \leq \gamma$, so $\left(x_{k}, \gamma\right) \in$ epi f for each k. Since epif is closed and $\left(x_{k}, \gamma\right) \rightarrow(x, \gamma)$, we have $(x, \gamma) \in$ epi f, that is $f(x) \leq \gamma$. Hence $x \in V_{\gamma}$ and V_{γ} is closed.

