
1.2.2 Affine Sets and Affine Hull

Given a, b ∈ Rn, the line connecting them is defined as

L[a, b] := {λa+ (1− λ)b| λ ∈ R}

Note that there is no restriction on λ.

Definition:(Affine Set) A subset S of Rn is affine if for any a, b ∈ S, we
have L[a, b] ⊆ S.

Definition:(Affine Combination)
Given x1, ..., xm ∈ Rn, an element in the form x =

∑m
i=1 λixi, where

∑m
i=1 λi =

1 is called an affine combination of x1, ..., xm.

Proposition: A set S is affine if and only if it contains all affine combina-
tion of its elements.

Definition:(Affine Hull) The affine hull of a set X ⊆ Rn is

aff(X) :=
⋂
{S| S is affine and X ⊆ S}

Proposition: For any subset X of Rn,

aff(X) =
{ m∑
i=1

λixi|
m∑
i=1

λi = 1, xi ∈ X
}

In fact, an affine set S ⊂ Rn is of the form x + V , where x ∈ S and V is a
vector space called the subspace parallel to S.

Lemma: Let S be nonempty. Then the following are equivalent:

1. S is affine

2. S is of the form x+ V for some subspace V ⊂ Rn and x ∈ S.

Also, V is unique and equals to S − S.

Proof. Suppose S is affine. We first assume 0 ∈ S. Let x ∈ S and γ ∈ R. Since
0 ∈ S, we have γx + (1 − γ)0 = γx ∈ S. Now, suppose x, y ∈ S. Then x + y =
2( 1

2x + 1
2y) ∈ S. Hence, S is closed under addition and scalar multiplication.

Therefore, S = 0 + S is a linear subspace. If 0 /∈ S, then 0 ∈ S − x for any
x ∈ S. So S − x is a linear subspace. Therefore, S = x+ V .
The other direction is simple, just use the fact that V is a linear subspace.
Now suppose S = x1 + V1 = x2 + V2, where x1, x2 ∈ S, V1, V2 are linear
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Figure 1: Affine hull and the parallel subspace

subspaces. Then x1 − x2 + V1 = V2. Since V2 is a subspace, x1 − x2 ∈ V1. So
V2 = x1 − x2 + V1 ⊆ V1. Similarly, V1 ⊆ V2. Therefore V is unique.
Since S = x + V, so V = S − x ⊆ S − S. Let u, v ∈ S and z = u − v. Then
S− v = V by the uniqueness of V . So z ∈ S− v = V and hence S−S ⊆ V .

Definition:(Dimension of affine and convex sets) The dimension of aff(X)
is defined to be the dimension of the subspace parallel to X. The dimension of
a convex set C is defined to be the dimension of aff(C).

Definition:(Affinely Independent) x0, ..., xm ∈ Rn are affinely independent
if [∑

λixi = 0,
∑

λi = 0
]

=⇒ [λi = 0 for all i]

Proposition: x0, ..., xm ∈ Rn are affinely independent if and only if x1 −
x0, ..., xm − x0 are linearly independent.

Proof. Suppose x0, ..., xm are affinely independent. Suppose

m∑
i=1

λi(xi − x0) = 0
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Let λ0 := −
∑m
i=1 λi, then we have

λ0x0 +

m∑
i=1

λixi = 0

Since
∑m
i=0 λi = 0, λi = 0 for all i. Hence, x1 − x0, ..., xm − x0 are linearly

independent.
The converse follows directly from the definition

Lemma: Let S := aff({x0, ..., xm}), where xi ∈ Rn. Then span{x1−x0, ..., xm−
x0} is the subspace parallel to S.

Proof. Let V be the subspace parallel to S. Then S − x0 = V .
Hence span{x1 − x0, ..., xm − x0} ⊆ V .
Let x ∈ V, then x+ x0 ∈ S. So

x+ x0 =

m∑
i=0

λixi, where
∑

λi = 1

Therefore

x =

m∑
i=1

λi(xi − x0) ∈ span{x1 − x0, xm − x0}

Proposition: x0, ..., xm are affinely independent in Rn if and only if its affine
hull is m-dimensional.

Proof. Suppose x0, ..., xm are affinely independent. Then x1 − x0, ..., xm − x0
are linearly independent. Therefore, V = span{x1 − x0, ..., xm − x0} is m-
dimensional. Since V is the subspace parallel to aff({x0, ..., xm}), aff({x0, ..., xm})
is m-dimensional.
The converse is proven similarly.

Definition:(m-Simplex)Let x0, ..., xm be affinely independent in Rn. Then
the set

∆m := conv({x0, ..., xm})

is called a m-simplex in Rn with vertices xi.

Proposition: Consider a m-simplex ∆m with vertices x0, ..., xm. For every
x ∈ ∆m, there is a unique element (λ0, ..., λm) ∈ Rm+1

+ such that

x =
∑

λixi,
∑

λi = 1.
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Proof. The existence follows directly from the definition. We only need to show
the uniqueness.
Suppose (λ0, ..., λm), (µ0, ..., µm) ∈ Rm+1

+ satisfy

x =
∑

λixi =
∑

µixi,
∑

λi =
∑

µi = 1

Then ∑
(λi − µi)xi = 0,

∑
(λi − µi) = 0

Since x0, ..., xm are affinely independent, λi − µi = 0 for all i.

Figure 2: Examples of m-simplex

Definition: The cone generated by a set X is the set of all nonnegative combi-
nation of elements in X. A nonnegative (positive) combination of x1, x2, ..., xm
is of the form

m∑
i=1

λixi, where λi ≥ 0 (λi > 0).

Next, we prove a important theorem concerning convex hulls.

Theorem:(Caratheodory’s Theorem) Let X be a nonempty subset of Rn.

(a) Every nonzero vector of cone(X) can be represented as a positive combina-
tion of linearly independent vectors from X.

(b) Every vector from conv(X) can be represented as a convex combination of
at most n+ 1 vectors from X.
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Proof. (a) Let x ∈ cone(X) and x 6= 0. Suppose m is the smallest integer such
that x is of the form

∑m
i=1 λixi, where λi > 0 and xi ∈ X. Suppose that xi are

not linearly independent. Therefore, there exist µi with at least one µi positive,
such that

∑m
i=1 µixi = 0. Consider γ, the largest γ such that λi − γµi ≥ 0 for

all i. Then
∑m
i=1 (λi − γµ)xi is a representation of x as a positive combination

of less than m vectors, contradiction. Hence, xi are linearly independent.
(b) Consider Y = {(x, 1) : x ∈ X}. Let x ∈ conv(X). Then x =

∑m
i=1 λixi,

where
∑m
i=1 λi = 1, so (x, 1) ∈ cone(Y ).

By (a), (x, 1) =
∑l
i=1 λ

′
i(xi, 1), where λi > 0. Also, (x1, 1), ..., (xl, 1) are linearly

independent vectors in Rn+1(at most n+ 1). Hence, x =
∑l
i=1 λ

′
ixi,

∑m
i=1 λ

′
i =

1

Proposition: Let X ⊆ Rn be a compact set. Then conv(X) is compact.

Proof. Let {xk} be a sequence in conv(X). By Caratheodory’s Theorem,

xk =

n+1∑
i=1

λki x
k
i

where λki ≥ 0, xki ∈ X and
∑n+1
i=1 λ

k
i = 1.

Note that the sequence {(λk1 , ..., λkn+1, x
k
1 , ..., x

k
n+1)} is bounded. Then it has a

limit point (λ1, ..., λn+1, x1, ..., xn+1), where
∑n+1
i=1 λi = 1 and xi ∈ X.

Hence
∑n+1
i=1 λixi ∈ conv(X) is a limit point of the sequence xk.

Therefore, conv(X) is compact.

1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take val-
ues in R := (−∞,∞], with the convention that a+∞ =∞ ∀a ∈ R,∞+∞ =∞,
and t · ∞ =∞ ∀t > 0.

1.3.1 Convex Functions

Definition:(Convex Functions) Let C be a convex subset of Rn. A function
f : C → R is called convex on C if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)y,∀x, y ∈ C, ∀λ ∈ [0, 1].

A function is called stricly convex if the inequality above is strict for all x, y ∈ C
with x 6= y, and all λ ∈ (0, 1). A function is called concave if (−f) is convex.

Definition:(Level Sets) For a function f : C → R, we define the level sets of
f to be {x | f(x) ≤ λ}.

If a function is convex, then all its level sets are also convex (Exercise).
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Figure 3: Convex Function

However, the convexity of all level sets of a function does not necessarily imply
the convexity of the function itself.

Examples of Convex Functions
The following functions are convex:

(a) f(x) := 〈a, x〉+ b for x ∈ Rn, where a ∈ Rn and b ∈ R.

(b) g(x) := ||x|| for x ∈ Rn.

(c) h(x) := x2 for x ∈ R.

(d) F (x) := 1
2x

TAx for x ∈ Rn, where A is a n×n symmetric positive semidef-
inite matrix. (i.e. xTAx ≥ 0 for all x ∈ Rn)

Definition:(Epigraph and Effective Domain)
The epigraph of a function f : X → [−∞,∞], where X ⊂ Rn, is given by

epif = {(x,w)| x ∈ X, w ∈ R, f(x) 6 w}.

The effective domain of f is given by

domf = {x| f(x) <∞}.

Note that domf is just the projection of epif on Rn.
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Definition:(Proper Function)
A function f is proper if f(x) < ∞ for at least one x ∈ X. f is improper if it
is not proper. By considering epif , f is proper means that epif is not empty
and does not contain any vertical line.

Theorem:(Jensen inequality)
A function f : Rn → R is convex if and only if for any λi ≥ 0 with

∑
λi = 1

and for any elements xi ∈ Rn, it holds that

f
(∑

λixi
)
≤
∑

λif(xi)

Proof. It suffices to prove that any convex function satisfies the Jensen inequal-
ity. We will prove this by induction.
The case m = 1, 2 are simple. So suppose the inequality holds for all k ≤ m.
Suppose λi ≥ 0 satisfies

∑m+1
i=1 λi = 1. Then

∑m
i=1 λi = 1− λm+1.

If λm+1 = 1, then λi = 0 for all i. Then the inequality holds.
So suppose λm+1 < 1. Then

m∑
i=1

λi
1− λm+1

= 1

and

f
(m+1∑
i=1

λixi
)

= f

(
(1− λm+1)

m∑
i=1

λi
1− λm+1

xi + λm+1xm+1

)

≤ (1− λm+1)f

( m∑
i=1

λi
1− λm+1

xi

)
+ λm+1f(xm+1)

≤ (1− λm+1)

m∑
i=1

λi
1− λm+1

f(xi) + λm+1xm+1

=
m+1∑
i=1

λif(xi)

The following gives a geometric characterization of convexity.

Proposition: A function f : Rn → R is convex if and only if epif ⊂ Rn+1

is convex.

Proof. Assume f is convex. Let (x1, t1), (x2, t2) ∈ epif and λ ∈ [0, 1]. Then

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λt1 + (1− λ)t2
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Hence (λ(x1, t1) + (1− λ)(x2, t2) ∈ epif .
Conversely, suppose epif is convex. Let x1, x2 ∈ domf and λ ∈ [0, 1].
Since epif is convex, λ(x1, f(x1)) + (1− λ)(x2, f(x2)) ∈ epif . Then

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Therefore, f is convex.

Definition:(Closed function) If the epigragh of a function f : X → R is
closed, we say that f is a closed function.

For example, the indicator funtion δX is convex if and only if X is convex,
is closed if and only if X is closed, where

δX(x) :=

{
0 x ∈ X
∞ otherwise

In fact, closedness is related to the concept of lower semicontinuity.
Recall that a function f is called lower semicontinuous at x ∈ X if

f(x) ≤ lim inf
k→∞

f(xk)

for every sequence {xk} ⊂ X with x → xk. f is lower semicontinuous if it is
lower semicontinuous at each x ∈ X. f is upper semicontinuous if −f is lower
semicontinuous.

Proposition: Let f : Rn → R be a function, then the following are equiv-
alent:

(i) The level set Vγ = {x|f(x) ≤ γ} is closed for every γ.

(ii) f is lower semicontinuous.

(iii) epif is closed.

Proof. If f(x) = ∞ for all x, then the result holds. So assume f(x) < ∞ for
some x ∈ Rn. Therefore, epif is nonempty and there exists level sets of f that
are nonempty.
(i) =⇒ (ii). Assume Vγ is closed for every γ. Suppose f is not lower semicon-
tinuous, that is

f(x) > lim inf
k→∞

f(xk)

for some x and sequence {xk} converging to x. Let γ satisfies

f(x) > γ > lim inf
k→∞

f(xk).

Hence, there exists a subsequence {xki} such that f(xki) ≤ γ for all i. So,
{xki} ⊂ Vγ . But Vγ is closed, x also belongs to Vγ . Therefore, f(x) ≤ γ, con-
tradiction.
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(ii) =⇒ (iii). Assume f is lower semicontinuous. Let (x,w) be the limit of
{(xk, wk)} ⊂ epi(f). We have f(xk) ≤ wk for all k. Since f is lower semicon-
tinuous, taking limit we have,

f(x) ≤ lim inf
k→∞

f(xk) ≤ w.

Hence (x,w) ∈ epif and so epif is closed.
(iii) =⇒ (i). Assume epif is closed. Let {xk} be a sequence in Vγ converging
to x for some γ. We have f(xk) ≤ γ, so (xk, γ) ∈ epif for each k. Since epif
is closed and (xk, γ) → (x, γ), we have (x, γ) ∈ epif , that is f(x) ≤ γ. Hence
x ∈ Vγ and Vγ is closed.
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