5 Algorithms
5.1 Gradient Descent Methods

Consider the following minimization problem

min f(z)

where f is a differentiable function.

A general optimization algorithm is of the following form:
Choose initial point #° and construct a sequence {z*} by

2 =gt 4 ndt, k=0,1,..

What should we choose for d*? What should we choose for 7;?
For the first question, we want d’ to be a descent direction, that is

f(at;d) = (Vf(z"),d") <0
Note that

~Vf(z)= argdlﬁg}%l f(z;d) = argdlmi@l<vf(x),d>

By choosing dt = V f(x!), we get the greatest rate of function value improve-
ment.
This is the gradient descent or steepest descent:

P =2t ()

As for the second question, there are mainly three ways to select 7.
Fixed step size: 7, is constant.
Exact line search

1 = argmin, s f(z +nd")

Backtracking line search: Shrink the step size until it satisfy some conditions.
One popular condition is the Armijo’s condition:
Choose 0 < o < %70 < f < 1, initialize n; = 1; take 1 := [, until

P = m i) < fat) — soml V)P

5.1.1 Strongly Convex and L-smooth

Before proving convergence results, we need to introduce two notations of a
function.



Definition:(Strongly Convex) A differentiable function f is called p-strongly
conver if

F) 2 f(@) + (Vf(@)y =) + Slly — |, for all 2,y

Definition:(L-smooth) A differentiable function f is called L-smooth if

L
Fy) < f(@) + (VI(@),y —2) + S lly — 2|, for all 2,y
We have the following characterization for the two notations.

Proposition:(Characterization of pu-strongly convex) Given a differen-
tiable function f, the following are equivalent:

L f(y) = f(@) + (Vf(x),y — @) + §lly — 2>, for all 2,y

2. {(ATHP)\)Z/) <AM(@)+A=2)f(y) = EA1=N)|ly—z[]?, for all z,y, X €
0,1

3. g(z) := f(z) — &|[=|]? is convex.
4. (VIy) = VI(@),y —2) = plly — z|f*, for all 2,y
5. V2f(x) — pl =0, for all x (if f is C?).

Proof. We have seen that (1), (3), (4), (5) are equivalent.
Let’s prove (2), (3) are equivalent.
(2)=-(3) Multiply by A, (1 — \) respectively, we get
2 2 2
Af(z) S Af(2) + AL = A f(y) = AL = Mlly — 2|

(1= NF(=) S AL =N (@) + (1= V() = EAQC =Ny -l
Summing up, we get
F(2) S Af(@) + (L= NF) = EAA = Vlly = 2|
= A (@) = SAllell? + (1= M) = SO =Nl + Slide + (1= Nyl
= Ag(@) + (1= Ng(y) + S l=IP
(3)=(2) Since g is convex, for X € [0,1], we have

gz + (1 = Ny) < Ag(z) + (1 = N)g(y), for all z,y



O+ (1= Ny)
<M (@) + (1= Nf) = GAlel? = £ = VIl + Slixe + @ - Vll?

= Af(@) + (1= N f() = SOl 2+ (1= Vllyll> = R|Je][2 = 221 = N, 9) = (1= 221y
= M (@) + (1= Nf(y) - §A< = N[l = 2(, ) + Iyl )

= M (@) + (1= Nf) = Slly— 2|

O

Proposition: (Characterization of L-smooth) Given a differentiable convex
function f, the following are equivalent:

L f(y) < f(x) +(Vf(zx),y —2) + ||y — z[|?, for all 2,y

2. {(A}m—i—(l—)\)y) > )\f(:r:)—i—(l—)\)f(y)—%/\(1—)\)||y—x|\2, for all z,y, A €
0.1

3. h(z) == Ljz||? - f(x) is convex.

4. (Vf(y) = Vf(x),y —z) > £|IVf(y) = Vf(@)[]? for all 2,y

5. [|Vf(y) = V()| < L||y — =||, for all 2,y (L-Lipschtiz gradient)
6. LI — V2f(z) = 0, for all x (if f is C?).

Proof. The equivalence of (1), (2), (3), (6) is similar to that of strong convexity.
We will show that (5)=-(1)=(4)=(5) holds.

(5)=(1): Consider g(t) = f(z+t(y—x)). Then g'(t) = (Vf(z+t(y—x)), (y—2)).
Then

f(@) = (Vf(x),y — )

fy) =
=9(1) —g(0) = (Vf(2),y — x)

:/ (Vf(z+tly )N,y —x) —(Vf(z),y—x)dt
/O (VI 4ty — 2) — V() y — x)dt
< [ 195 +tly =) - V@Il - i

0

1
g/ Lt||ly — x||*dt
0

L 2
= Slly -l



(1)=(4): Consider the function ¢, (z) := f(z) — (Vf(x), 2).
¢ is convex and V¢, (z) = Vf(z) — Vf(z).
Since, f(2) < f(y) + (Vf(y),2 —y) + ||z = yl|?, we have

f(2) =(Vf(@),2) < fly) = (VI(@),9) + (Vfy) = VI(z),2—y) + g\lz —ylP?

That is I
0(2) < 6u(y) + (Vou (), 2 — y) + 51| — Il

We minimized both sides over z. The left hand side is minimized at z = .
The right hand side is minimized at z = —1 V@, (y) + y. Hence,

F(&) = (V5 (),2) = 9(2) < 92(y) + (Voel) —1 V6. 0)) + 2| £ V0.0
= F6) ~ (V@) — 57 IV )~ V(@)

So

| =

fy) = fl@) = (Vf(@),y —2) = 5+ IVF(y) = Vf(2)]?

Interchange the role of x,y, we get

2

~

| =

f@) = fly) = (V) z —y) = 7 IVF(y) = V@)

2

~

Adding the two inequalities, we get

(V@) ~ Vi) —3) > TIV(@) - V)P

(1)=(2): Let z = Ax + (1 — A)y. Then

A (2) € Af(2) 4 (VF(2), Aw = 2) + £ Ale 2|

(1= N () < (1= NF )+ (VF(), (1= Ny 2) + 5 (0= Nlly — 2|
Then,
M () + (= N 1) < 1)+ EAL =Ny~
(4)=(5): We have

IVf(y) = VI@)|* < L{Vf(y) = Vf(x).y —z)
< LIVIy) = V@)l — |



5.1.2 Convergence of Gradient Descent Methods

We start of analysis of gradient descent method with L-smooth objective func-
tion.

We suppose the optimal value of f is finite and is denoted by f*. Also suppose
x* is a optimal solution.

Proposition: Suppose f is a convex C! function and is L-smooth. If the
step size n < %, then the fixed size gradient descent satisfies

1) = @) < g [l = a7 ?

|2
Proof. Let % := 2 — nV f(x). Then using quadratic upper bound, we have,

2
F) < 1@+ (<0 50 ) I95@1° < ) - BV

Hence, the sequence generated by gradient descent method is descending. That

is,

fa™1) < f(a")
Since f is convex, f (%) > f(z) + (Vf(z),2* — ). Then

f (@) < f@) = 2IVI@)IP
< (V@)@ -2t = 2V (@)
=1+ 5 (o =2 = o = = 9 1))

- (=2l = ot = o)

:f +%

Summing the above, we get

; i * 1 : i— %2 i 12
(F @) =) < 3= 3 ([l =) = o' = 27)
=1 nz‘:l
_i O_*2_ t_*2
=5 (I=" =" = l=* ~ =)
1 0 P
S%H z

But f(2%) is decreasing, hence

f(at) = fr<



Therefore in order to get f(z') — f* < ¢, we need O(1) iterations.
We can get a similar result for the backtracking line search method.

In order to get faster convergence, more assumptions are needed.
Lemma: Suppose f is p-strongly convex and L-smooth. Then

1 uL
(VI(y) = Vf(x),y—z) > mllvf(fv) ~VIWI®+ mllfﬂ —y?

Proof. Consider ¢(z) = f(z) — £]a]2. Vo(z) = Vf(z) — pa. So
Vo) ~ Vo> = V() ~ V() — (e )
= [V 5() ~ V1)~ 2{V f(x) = VS (), —y) + 1]x —
< (1= 2Y|V 1) - VI + i2lle — ol
< (1= 2y + e~
= (L~ e — P

Hence ¢(x) is L — p-smooth.
Then, (Vo(y) — V(@) y — 7) > 7 |Vé(y) - Vo(@)|. Hence

1
L—p

(Vf(y) = Vi) —ply—=z),y—=z) > IVf(y) = Vf(z)—ply — )|

After expanding, we get out required inequlity. O

Proposition: Suppose f is u-strongly convex and L-smooth. Then the constant

step size gradient descent method with 7; = MLL satisfies:
ot —atf < (K1) oo -t
TA\K+1

where K = L/p.
Proof.

lz"** = 2*||* = [la* — nV f(a') — 2"||?

= lla* —2*|* = (@' — 2", 29V f(2")) + ||V £ () ]?

2 2nuL
<ot — 2*))2 — n—|VF(z")|* — |l — 2*||> + n?| V f(=")|]?
< | nLJrMII JE)ll L+u” I+ IV )|l
2npL .
Z(l—ﬁ)ﬂxt—x &
I

L—p.o )
= (- r —X
(Tl =



Hence

* K —1 ! *
lot = ol < (5 ) 1 =)

We can get a similar result with the backtracking gradient descent.

Lemma: Suppose f is u-strongly convex and L-smooth. Then

2u(f(x) = ) < |V f ()]

Proof. Since f is p-strongly convex,
) 2 f@) + (V(@),y = ) + Slly o]

By minimizing the right hand side with respect to y, we find the minimizer is

x — in(a:)
Therefore,
1) = (@) = 31V @) P
Since this holds for all y, we have
£ 2 fla) — 5 V)P
> f(x o T

O

Proposition: Suppose f is pu-strongly convex and L-smooth. Then the gradient
descent method with backtracking line search satisfies:

fla') = fr < (f@%) — )
where ¢ = 1 — min{2apu, 2a8u/L}.
Proof. We first show that the step size is either 7y = 1 or satisfies n, > /L.
Let a1t :=2 —nVf(x). f0<n<1/L. Then
+ 2 L772 2
f@™) < f@) =0 VI@)7 + ==V /()]
< J(@) = IV @)
< f(z) — an|| V£ ()|

Let n; be the step size chosen at iteration t¢.
If the Armijo’s condition is satisfied at the initialization, then 7, = 1.
Otherwise, 7; /5 does not satisfy the Armijo’s condition.
So % > % Hence n; > %
If 5, = 1, then
f@™) < fa') = al|V f(2)]?



If n; > /L, then

Fla™) < fa) — an|V f(@")|* < f(2) — aB/LIV f(2")||?
Therefore
F@™) = f* < f(a') - £ — min{a, aB/L}||V f(2)]?
Since 2u(f(zt) — f*) < |V f(z?)|?,
f@*h) = f* < (1= min{208u, 2a8p/LY)(f(z") — [*)

Therefore,

F@Y) = £ < (1= min{2ap, 2086/ L} (f(2°) - f7)
0

In order to get a € accuracy, we need O(log(1/¢)) iterations.
Therefore, we get a linear convergence if the objective function is also strongly
convex.

5.2 Projected Gradient Descent

Let’s consider the problem:

min f(x)

zeC

where f : R™ — R is a continuously differentiable function, C' is a closed convex
set.

If we simply carry out a gradient descent, the iterate points may not be in C.
One simplest one to modify the gradient descent is to consider the projected
version, which is called projected gradient descent:

't = Po(at — eV f(2h))

where Po(+) is the projection to C.
Recall the following results about projection to a closed convex set.

Proposition: Let C' be a nonempty convex set and let f : R® — R be a
convex C' function. Then z* € C' minimizes f over C if and only if

(VF(z*), (2 —2%)) > 0, Yz € C.

Proposition: z* = Px(z) if and only if (z — 2*,x — 2*) <0, Vaz € C.



5.2.1 Convergence for L-smooth objective

We will first show convergence result for L-smooth objective f.

Lemma Suppose f is L-smooth. Then the projected gradient descent with
fixed step size ny =n < % satisfies:

Pt < Flat) - ottt - )P

Proof. We have
(@ — 2" 2t g Vi(at) 2 <0

That is

1
(V). at*! = at) < —flat o

Since f is L-smooth,

P < F@t) + (V7,2 —at) 4 et ot P

1 L
< S+ (- + Dt — 2ty
uis
¢ L. i )2
< fa') = St = ot
O

Proposition: Let f be L-smooth. Then the projected gradient descent
with fixed step size n; =n < % satisfies:

Fat) = < a0 -2

T

Proof. Since z'*! = Po (2t — 0,V f(2)), we have

(@ a2t~ V) — ) <0
That is
1

(Vf(a"),a™! —a*) < p;

<$t+1 _ .T*,J)t _ J)t+1>

Since f is convex, we have

fl@) > f@@') + (Vf(a'), 2" —a')



Since f is L-smooth, then

P < J@) + (V) 2t — o)+ Tt — P

2
L
< f(a:*) - <Vf(xt),$* _ g;t> + <Vf(xt)’xt+l _ xt> + §||xt+l o xtHQ
L
= f(x*) + <Vf(l.t)’1,t+l o 1,*) + §||xt+1 N xtHQ
1 L
< F@) 4 — (@ ot — Y ¢ et g
Nt 2
L
< f(x*) — L<:L't+1 B x*,xtH B xt> + §||$t+1 . xt”Q
* L " 112 . i

Summing up, we have

(2"~ = 2*[* = [la* — 2™[|*)

™
=
Rﬁ
4
IA
Nk

S

—

NIEe RN

O ot = lat = 2%

%)

(

Bl

0 *

A
EX
I
8

Since f(z') is decreasing, we have

* L *
fah - < Sl - 27|

5.2.2 Convergence rate under strong convexity

Let’s now consider the projected gradient descent under the assumption that f
is p-strongly convex.

We denote G, (x) = Pc(x —nV f(z)). A optimal solution of the problem is in
fact a fixed point of G,.

If we can show that G, is a contraction, then {z'} generated by the projected
gradient method converges linearly to an optimal solution.

Proposition: Suppose f is p-strongly convex and L-smooth. Then G, sat-
isfies

|G () — Gy (y)|| < max{|L —nL[,[1 —nul}tl|lz —yl|,Vz,y
and is a contraction for all n € (0,2/L).

Proof. We first prove that ||Po(x) — Po(y)| < ||z — y|| for all z,y.
By the projection property

((x — Po(x),z — Po(x)) <0, Vz€ C

10



Put z = Po(y), then (z — Po(z), Pe(y) — Po(z)) <0.
Similarly, (y — Pc(y), Po(z) — Pe(y)) < 0. Hence

(y—z— (Pc(y) — Po(z)), Po(x) — Po(y)) <0

1Pc () = Pe)|* < (@ —y, Pe(x) — Po(y))
ILBIy Cauchy-Schwarz, ||Pc(z) — Po(y)|| < ||z —y].
1G (2) = Gy (w)I?
= |Pe(@ =1V f(z)) = Pely = nV )|
<@ =nVi@) = -V i@l
= llo =yl = 20(Vf(2) = VI (y), 2 —y) + °IVF(2) = VS ()l

<o =yl — 2 g g2 - ﬂnvm) VWP + IV @) — Vi)

p+L
—(1- 2”“L >||x—y||2+n<n——>||w< ) = V)|
< <1—M)Hx—yu%nmax{mn—i) 120~ —— )}l —

p+ L " u+L
= max{(1 — L)% (1 —nu)*}|z — y||
O

Proposition: Suppose f is p-strongly convex and L-smooth. Then the pro-
jected gradient descent with fixed step size LLW satisfies:

L—p
L+p

t

) fl2® — 2|

[l

— a7 < (

Proof. Since n = Li-m’ max{(1 —nL),(1 —nu)} = L+u Then

[ze41 = 2| = [|Po (@) — Po(e™)[| <

O

Therefore, we achieve the same convergence rate as gradient descent methods
for projected gradient descent.
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