3.2 Duality

3.2.1 Lagrangian and Dual Function

We consider a standard optimization problem (P):

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, h \\
& h_{j}(x)=0, j=1, \ldots, k
\end{aligned}
$$

The optimal value p^{*} of (P) is called the primal optimal value.
Definition: (Lagrangian) The Lagrangian associated with the above problem is defined as

$$
L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{h} \lambda_{i} g_{i}(x)+\sum_{j=1}^{k} \mu_{j} h_{j}(x)
$$

The vectors λ, μ are called the dual variables or Lagrange multipliers.
Definition: (Dual function) The dual function is defined as

$$
q(\lambda, \mu)=\inf _{x} L(x, \lambda, \mu)
$$

Note that q is always concave, being the pointwise infimum of affine functions.
Let p^{*} be the optimal value of (P). The dual function gives a lower bound on p^{*}.
Proposition: For all $\lambda \geq 0$ and μ, we have

$$
q(\lambda, \mu) \leq p^{*}
$$

Proof. Let x be a feasible point. Then $g_{i}(x) \leq 0$ and $h_{j}(x)=0$. Then

$$
\sum_{i=1}^{h} \lambda_{i} g_{i}(x)+\sum_{j=1}^{k} \mu_{j} h_{j}(x) \leq 0
$$

Hence for all $\lambda \geq 0$ and μ,

$$
q(\lambda, \mu) \leq L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{h} \lambda_{i} g_{i}(x)+\sum_{j=1}^{k} \mu_{j} h_{j}(x) \leq f(x)
$$

Since this holds for all feasible points, we have $q(\lambda, \mu) \leq p^{*}$.
We next consider the dual problem.
Definition:(Dual Problem) The following optimization problem (D) is called the dual problem associated to (P):

$$
\begin{array}{r}
\max q(\lambda, \mu) \\
\text { subject to } \lambda \geq 0
\end{array}
$$

A pair (λ, μ) such that $\lambda \geq 0$ and $q(\lambda, \mu)>-\infty$ is called dual feasible.
A optimal solution $\left(\lambda^{*}, \mu^{*}\right)$ is called dual optimal.

Example: (Linear Program)

Consider a standard linear program (LP):

$$
\begin{array}{r}
\min _{x \in \mathbb{R}^{n}}\langle c, x\rangle \\
\text { subject to } A x=b \\
x \geq 0
\end{array}
$$

The Lagrangian is given by

$$
L(x, \lambda, \mu)=c^{T} x-\sum_{i=1}^{n} \lambda_{i} x_{i}+\mu^{T}(A x-b)=\left(A^{T} \mu+c-\lambda\right)^{T} x-b^{T} \mu
$$

If $c+A^{T} \mu-\lambda \neq 0$, then $L(x, \lambda, \mu)$ is unbounded below. Hence the dual function is given by

$$
q(\lambda, \mu)= \begin{cases}-b^{T} \mu & c+A^{T} \mu-\lambda=0 \\ -\infty & \text { otherwise }\end{cases}
$$

Therefore, the dual problem is given by

$$
\begin{gathered}
\max -b^{T} \mu \\
\text { subject to } A^{T} \mu+c-\lambda=0 \\
\lambda \geq 0
\end{gathered}
$$

It can also be written in this form:

$$
\begin{aligned}
& \max -b^{T} \mu \\
& \quad A^{T}+c \mu \geq 0
\end{aligned}
$$

Example: Duality and Conjugate function

Consider the following optimization problem

$$
\begin{array}{r}
\min f(x) \\
\text { subject to } A x \leq b \\
C x=d
\end{array}
$$

The dual function is

$$
\begin{aligned}
q(\lambda, \mu) & =\inf _{x}\left(f(x)+\lambda^{T}(A x-b)+\mu^{T}(C x-d)\right) \\
& =-b^{T} \lambda-d^{T} \mu+\inf _{x}\left(f(x)+\left(A^{T} \lambda+C^{T} \mu\right)^{T} x\right)
\end{aligned}
$$

Note that

$$
\inf _{x}\left(f(x)+\left(A^{T} \lambda+C^{T} \mu\right)^{T} x\right)=-\sup _{x}\left(-\left(A^{T} \lambda+C^{T} \mu\right)^{T} x-f(x)\right)=-f^{*}\left(-\left(A^{T} \lambda+C^{T} \mu\right)\right)
$$

Hence, we have

$$
q(\lambda, \mu)=-b^{T} \lambda-d^{T} \mu-f^{*}\left(-\left(A^{T} \lambda+C^{T} \mu\right)\right)
$$

3.2.2 Strong and Weak Duality

Let d^{*} be the optimal value of the dual problem. We have the following inequality.

Proposition:(Weak Duality) Let p^{*} be the primal optimal value and d^{*} be the dual optimal value. Then

$$
d^{*} \leq p^{*}
$$

The difference $p^{*}-d^{*}$ is called the duality gap.
If $p^{*}=d^{*}$, then we say that strong duality holds.
This leads us to ask the question when do strong duality holds.
Such conditions are called constraint qualification. We will study one simple qualification: Slater's condition.

Consider a convex problem of the form:

$$
\begin{gathered}
\min f(x) \\
\text { subject to } g_{i}(x) \leq 0, i=1, \ldots, h \\
A x=b
\end{gathered}
$$

where f, g_{i} are convex.
Slater's Condition: There exists $x \in \operatorname{ri}(D)$ such that

$$
g_{i}(x)<0, i=1, \ldots, h, \quad A x=b
$$

where $D=\operatorname{dom} f \cap\left(\cap_{i} \operatorname{dom} g_{i}\right)$.
Theorem:(Slater's Theorem) If the problem is convex and Slater's condition is satisfied, then strong duality holds.

3.2.3 Geometric Interpretation

Consider the following set

$$
A:=\left\{(u, v, t) \mid \exists x g_{i}(x) \leq u_{i}, i=1, \ldots, h, h_{j}(x)=v_{j}, j=1, \ldots, k, f(x) \leq t\right\}
$$

We can show that A is convex if the problem is convex.
Note that

$$
p^{*}=\inf \{t \mid(0,0, t) \in A\}
$$

that is the lowest point where A intersects the 'vertical'-axis. We can also interpret the dual function through this geometric setting:

$$
q(\lambda, \mu)=\inf \{\langle(\lambda, \mu, 1),(u, v, t)\rangle \mid(u, v, t) \in A\}
$$

For fixed (λ, μ), we can define a hyperplane

$$
\langle(\lambda, \mu, 1),(u, v, t)\rangle=q
$$

Then $q(\lambda, \mu)$ is where a supporting hyperplane to A with 'slope' (λ, μ) intersects the 'vertical' axis.
Therefore, strong duality holds if and only if there is a nonvertical supporting hyperplane to A at $\left(0,0, p^{*}\right)$.

Figure 1: Geometric picture of the set G and dual function

Figure 2: Primal and dual optimal value

Figure 3: Geometric picture of the set A

Example: Consider the problem

$$
\begin{aligned}
& \min _{x, y \geq 0} e^{-\sqrt{x y}} \\
& \text { subject to } x=0
\end{aligned}
$$

The optimal value p^{*} is 1 .
The dual function is given by

$$
q(\lambda)=\inf _{x, y \geq 0}\left\{e^{-\sqrt{x y}}+\lambda x\right\}= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Hence, the dual optimal value d^{*} is 0 .
Therefore, the strong duality does not hold.
Note that Slater's Condition is not satisfied for this example.

3.3 KKT conditions

Let's consider the general convex problem again

$$
\begin{aligned}
& \min f(x) \\
& \text { subject to } g_{i}(x) \leq 0, i=1, \ldots, h \\
& h_{j}(x)=0, j=1, \ldots, k
\end{aligned}
$$

where are the functions are convex. We also assume that h_{j} are affine. Note that

$$
\sup _{\lambda \geq 0, \mu} L(x, \lambda, \mu)= \begin{cases}f(x) & g_{i}(x) \leq 0, h_{j}(x)=0 \\ \infty & \text { otherwise }\end{cases}
$$

Then $p^{*}=\inf _{x} \sup _{\lambda>0, \mu} L(x, \lambda, \mu)$
On the other hand, $\bar{d}^{*}=\sup _{\lambda \geq 0, \mu} \inf _{x} L(x, \lambda, \mu)$.
Therefore, strong duality is equivalent to

$$
\sup _{\lambda \geq 0, \mu} \inf _{x} L(x, \lambda, \mu)=\inf _{x} \sup _{\lambda \geq 0, \mu} L(x, \lambda, \mu)
$$

Suppose strong duality holds. Let x^{*} be primal optimal and $\left(\lambda^{*}, \mu^{*}\right)$ be dual optimal. Then

$$
\begin{aligned}
f\left(x^{*}\right) & =q\left(\lambda^{*}, \mu^{*}\right) \\
& =\inf _{x}\left(f(x)+\sum_{i=1}^{h} \lambda_{i}^{*} g_{i}(x)+\sum_{j=1}^{k} \mu_{j}^{*} h_{j}(x)\right) \\
& \leq f\left(x^{*}\right)+\sum_{i=1}^{h} \lambda_{i}^{*} g_{i}\left(x^{*}\right)+\sum_{j=1}^{k} \mu_{j}^{*} h_{j}\left(x^{*}\right) \\
& \leq f\left(x^{*}\right)
\end{aligned}
$$

Therefore, we have equality for each line. In particular, we have

$$
\sum_{i=1}^{h} \lambda_{i}^{*} g_{i}\left(x^{*}\right)=0
$$

Since each term is nonpositive, we have $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0$ for all i.
This is called complementary slackness.
Suppose all the functions are also differentiable. Then since x^{*} minimize $L\left(x, \lambda^{*}, \mu^{*}\right)$, we have

$$
\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0
$$

That is

$$
\nabla f\left(x^{*}\right)+\sum_{i=1}^{h} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{k} \mu_{j}^{*} h_{j}\left(x^{*}\right)=0
$$

Combining with the complementary slackness condition, we have the following Karush-Kuhn-Tucker(KKT) condition:

$$
\begin{aligned}
\nabla f\left(x^{*}\right)+\sum_{i=1}^{h} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{k} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right) & =0 \\
g_{i}\left(x^{*}\right) & \leq 0, i=1, \ldots, h \\
h_{j}\left(x^{*}\right) & =0, j=1, \ldots, k \\
\lambda_{i}^{*} & \geq 0 \\
\lambda_{i}^{*} g_{i}\left(x^{*}\right) & =0, i=1, \ldots, h
\end{aligned}
$$

Conversely, suppose $x^{*},\left(\lambda^{*}, \mu^{*}\right)$ satisfy the KKT conditions.
Since $L\left(x, \lambda^{*}, \mu^{*}\right)$ is convex in x and $\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$, then x^{*} minimizes
$L\left(x, \lambda^{*}, \mu^{*}\right)$. Then

$$
q\left(\lambda^{*}, \mu^{*}\right)=L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=f\left(x^{*}\right)+\sum_{i=1}^{h} \lambda_{i}^{*} g_{i}\left(x^{*}\right)+\sum_{j=1}^{k} \mu_{j}^{*} h_{j}\left(x^{*}\right)=f\left(x^{*}\right)
$$

Therefore, there is no duality gap and $x^{*},\left(\lambda^{*}, \mu^{*}\right)$ are primal optimal and dual optimal respectively.
To conclude, we have the following optimal condition:
Theorem: Consider the convex problem (P). Suppose strong duality holds. Then $x^{*},\left(\lambda^{*}, \mu^{*}\right)$ are primal and dual optimal if and only if $x^{*},\left(\lambda^{*}, \mu^{*}\right)$ satisfy the KKT conditions.

Remark: If the functions are not differentiable, we can replace the first KKT condition by $0 \in \partial f\left(x^{*}\right)+\sum_{i=1}^{h} \lambda_{i}^{*} \partial g_{i}\left(x^{*}\right)+\sum_{j=1}^{k} \mu_{j}^{*} \partial h_{j}\left(x^{*}\right)$.

Example Consider the problem

$$
\begin{gathered}
\min x^{2}+y^{2} \\
\text { subject to } x+y=1 \\
x, y \geq 0
\end{gathered}
$$

The KKT condition can be written as

$$
\begin{aligned}
2 x-\lambda_{1}+\mu & =0 \\
2 y-\lambda_{2}+\mu & =0 \\
x+y & =1 \\
x, y & \geq 0 \\
\lambda_{1}, \lambda_{2} & \geq 0 \\
\lambda_{1} x=\lambda_{2} y & =0
\end{aligned}
$$

By the first two conditions, we have,

$$
\lambda_{1}=2 x+\mu, \quad \lambda_{2}=2 y+\mu
$$

By the complementary slackness conditions, we have

$$
2 x^{2}+\mu x=0,2 y^{2}+\mu y=0
$$

Then $x=0$ or $-\mu / 2$, and $y=0$ or $-\mu / 2$.
We cannot have x, y both equal to 0 since otherwise $x+y=0 \neq 1$.
Suppose exactly one of x, y is zero, say x.
Then $y=-\mu / 2$. Since $x+y=1$, then $\mu=-2$. But since $x=0$, this implies that $\lambda_{1}=\mu=-2<0$. This violates the dual feasibility.
Therefore, we must have x, y both nonzero. That is $x=y=-\mu / 2$.
Since $x+y=1$, we have $\mu=-1$. So $x=y=1 / 2$ and $\lambda_{1}=\lambda_{2}=0$ satisfy the KKT conditions. Therefore the global minimum is obtained at $(1 / 2,1 / 2)$.

