1 Convex Sets and Functions

1.1 Convex Sets

Definition:(Convex sets) A subset C of \mathbb{R}^n is called *convex* if

 $\lambda x + (1 - \lambda)y \in C, \ \forall \ x, y \in C, \ \forall \lambda \in [0, 1].$

Geometrically, it just means that the line segment joining any two points in a convex set C lies in C.

Figure 1: Convex and non-convex set

Definition:(Convex combination) Given $x_1, ..., x_m \in \mathbb{R}^n$, an element in the form $x = \sum_{i=1}^m \lambda_i x_i$, where $\sum_{i=1}^m \lambda_i = 1$ and $\lambda_i \ge 0$ is called a convex combination of $x_1, ..., x_m$.

Proposition: A subset C of \mathbb{R}^n is convex if and only if contains all convex combination of its element.

Proof. Suppose C is convex. We will show by induction that it contains all convex combination $\sum_{i=1}^{m} \lambda_i x_i$ of its elements.

The case m = 1, 2 is trivial, so suppose all convex combination of k elements lies in C, where $k \leq m$. Consider

$$x := \sum_{i=1}^{m+1} \lambda_i x_i, \text{ where } \sum_{i=1}^{m+1} \lambda_i = 1$$

If $\lambda_{m+1} = 1$, then $\lambda_1 = \cdot = \lambda_m = 0$. Then $x \in C$. So assume $\lambda_{m+1} < 1$, then

$$\sum_{i=1}^{m} \lambda_i = 1 - \lambda_{m+1} \text{ and } \sum_{i=1}^{m} \frac{\lambda_i}{1 - \lambda_{m+1}} = 1$$

Then $y = \sum_{i=1}^{m} \frac{\lambda_i}{1-\lambda_{m+1}} x_i \in C$. Hence

$$x = (1 - \lambda_{m+1})y + \lambda_{m+1}x_{m+1} \in C$$

The other direction is trivial.

Proposition: Let C_1 be a convex set of \mathbb{R}^n and let C_2 be a convex set pf \mathbb{R}^m . Then the Cartesian product $C_1 \times C_2$ is a convex subset of $\mathbb{R}^n \times \mathbb{R}^m$.

1.1.1 Examples of Convex Sets

- (a) Open and closed balls in \mathbb{R}^n .
- (b) Hyperplanes: $\{x : \langle a, x \rangle = b, a \in \mathbb{R}^n, b \in \mathbb{R}\}.$
- (c) Halfspaces: $\{x : \langle a, x \rangle \leq b, a \in \mathbb{R}^n, b \in \mathbb{R}\}.$
- (d) Non-Negative Orthant: $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x \ge 0\}.$
- (e) Convex cones: C is called a *cone* if $\alpha x \in C, \forall \alpha > 0, x \in C$. A cone which is convex is called a *convex cone*.

Figure 2: Examples of convex sets

Proposition: Let $\{C_i \mid i \in I\}$ be a collection of convex sets. Then:

- (a) $\cap_{i \in I} C_i$ is convex, where each C_i is convex.
- (b) $C_1 + C_2 = \{x + y \mid x \in C_1, y \in C_2\}$ is convex.
- (c) λC is convex for any convex sets C and scalar λ . Furthermore, $(\lambda_1 + \lambda_2)C = \lambda_1 C + \lambda_2 C$ for positive λ_1, λ_2 .
- (d) C^{o}, \overline{C} are convex, i.e. the interior and closure of a convex set are convex.
- (e) $T(C), T^{-1}(C)$ are convex, where T is a linear map.

Proof. Parts (a)-(c), (e) follows from the definition (Exercise!). Let's prove (d). Interior Let $x, y \in C^{\circ}$. Then there exists r such that balls with radius r centred at x and y are both inside C.

Suppose $\lambda \in [0, 1]$ and ||z|| < r. By convexity of C, we have,

$$\lambda x + (1 - \lambda)y + z = \lambda(x + z) + (1 - \lambda)(y + z) \in C$$

Therefore, $\lambda x + (1 - \lambda)y \in C^{\circ}$. Hence C° is convex. <u>Closure</u> Let $x, y \in \overline{C}$. Then there exists sequences $\{x_k\} \subset C, \{y_k\} \subset C$ such

that $x_k \to x, y_k \to y$. Suppose $\alpha \in [0, 1]$. Then for each k,

 $\lambda x_k + (1 - \lambda) y_k \in C$

But $\lambda x_k + (1 - \lambda)y_k \to \lambda x + (1 - \lambda)y \in \overline{C}$. Hence, \overline{C} is convex.

1.2 Convex and Affine Hulls

1.2.1 Convex Hull

Definition:(Convex Hull)

Let X be a subset of \mathbb{R}^n . The convex hull of X is defined by

$$\operatorname{conv}(X) := \bigcap \{ C | C \text{ is convex and } X \subseteq C \}$$

In other words, conv(X) is the smallest convex set containing X. The next proposition provides a good representation for elements in the convex hull.

Proposition: For any subset X of \mathbb{R}^n ,

$$\operatorname{conv}(X) = \left\{ \sum_{i=1}^{m} \lambda_i x_i | \sum_{i=1}^{m} \lambda_i = 1, \ \lambda_i \ge 0, \ x_i \in X \right\}$$

Proof. Let $C = \left\{ \sum_{i=1}^{m} \lambda_i x_i | \sum_{i=1}^{m} \lambda_i = 1, \lambda_i \ge 0, x_i \in X \right\}$. Clearly, $X \subseteq C$. Next, we check that C is convex.

Let $a = \sum_{i=1}^{p} \alpha_i a_i, b = \sum_{j=1}^{q} \beta_j b_j$ be elements of C, where $a_i, b_i \in C$ with $\alpha_i, \beta_j \ge 0$ and $\sum \alpha_i = \sum \beta_j = 1$. Suppose $\lambda \in [0, 1]$, then

$$\lambda a + (1 - \lambda)b = \sum_{i=1}^{p} \lambda \alpha_i a_i + \sum_{j=1}^{q} (1 - \lambda)\beta_j b_j.$$

Since

$$\sum_{i=1}^{p} \lambda \alpha_i + \sum_{j=1}^{q} (1-\lambda)\beta_j = \lambda \sum_{i=1}^{p} \alpha_i + (1-\lambda) \sum_{j=1}^{q} \beta_j = 1$$

we have $\lambda a + (1 - \lambda)b \in C$. Hence, C is convex. Also, $\operatorname{conv}(X) \subseteq C$ by the definition of $\operatorname{conv}(X)$.

Suppose $a = \sum \lambda_i a_i \in C$. Then since each $a_i \in X \subseteq \text{conv}(X)$ and conv(X) is convex, we have $a \in \text{conv}(X)$. Therefore, conv(X) = C.

Figure 3: Examples of convex hull

Let $a, b \in \mathbb{R}^n$, define the interval

$$[a,b) := \{\lambda a + (1-\lambda)b \mid \lambda \in (0,1]\}$$

The intervals (a, b], (a, b) are defined similarly.

Lemma: For a convex set $C \in \mathbb{R}^n$ with nonempty interior, take $a \in C^{\circ}$ and $b \in \overline{C}$. Then $[a, b) \subset C^{\circ}$.

Proof. Since $b \in \overline{C}$, for any $\epsilon > 0$, we have $b \in C + \epsilon \mathbf{B}$, where **B** denotes the closed unit ball centered at 0.

Take $\lambda \in (0,1]$ and let $x_{\lambda} := \lambda a + (1-\lambda)b$. Let ϵ be such that $a + \epsilon \frac{2-\lambda}{\lambda} \mathbf{B} \subset C$.

$$x_{\lambda} + \epsilon \mathbf{B} = \lambda a + (1 - \lambda)b + \epsilon \mathbf{B}$$

$$\subset \lambda a + (1 - \lambda)[C + \epsilon \mathbf{B}] + \epsilon \mathbf{B}$$

$$= \lambda a + (1 - \lambda)C + (2 - \lambda)\epsilon \mathbf{B}$$

$$\subset \lambda [a + \epsilon \frac{2 - \lambda}{\lambda} \mathbf{B}] + (1 - \lambda)C$$

$$\subset \lambda C + (1 - \lambda)C \subset C$$

Hence $x_{\lambda} \in C^{\circ}$ and $[a, b) \subset C^{\circ}$.

1.2.2 Affine Sets and Affine Hull

Given $a, b \in \mathbb{R}^n$, the line connecting them is defined as

$$\mathcal{L}[a,b] := \{\lambda a + (1-\lambda)b | \ \lambda \in \mathbb{R}\}$$

Note that there is no restriction on λ .

Definition:(Affine Set) A subset S of \mathbb{R}^n is affine if for any $a, b \in S$, we have $\mathcal{L}[a, b] \subseteq S$.

Definition:(Affine Combination)

Given $x_1, ..., x_m \in \mathbb{R}^n$, an element in the form $x = \sum_{i=1}^m \lambda_i x_i$, where $\sum_{i=1}^m \lambda_i = 1$ is called an affine combination of $x_1, ..., x_m$.

Proposition: A set S is affine if and only if it contains all affine combination of its elements.

Definition:(Affine Hull) The *affine hull* of a set $X \subseteq \mathbb{R}^n$ is

 $\operatorname{aff}(X):=\bigcap\{S|\ S \text{ is affine and } X\subseteq S\}$

Proposition: For any subset X of \mathbb{R}^n ,

$$\operatorname{aff}(X) = \left\{ \sum_{i=1}^{m} \lambda_i x_i | \sum_{i=1}^{m} \lambda_i = 1, \ x_i \in X \right\}$$

In fact, an affine set $S \subset \mathbb{R}^n$ is of the form x + V, where $x \in S$ and V is a vector space called the subspace parallel to S.

Figure 4: Affine hull and the parallel subspace

Lemma: Let S be nonempty. Then the following are equivalent:

- 1. S is affine
- 2. S is of the form x + V for some subspace $V \subset \mathbb{R}^n$ and $x \in S$.

Also, V is unique and equals to S - S.

Proof. Suppose S is affine. We first assume $0 \in S$. Let $x \in S$ and $\gamma \in \mathbb{R}$. Since $0 \in S$, we have $\gamma x + (1 - \gamma)0 = \gamma x \in S$. Now, suppose $x, y \in S$. Then $x + y = 2(\frac{1}{2}x + \frac{1}{2}y) \in S$. Hence, S is closed under addition and scalar multiplication. Therefore, S = 0 + S is a linear subspace. If $0 \notin S$, then $0 \in S - x$ for any $x \in S$. So S - x is a linear subspace. Therefore, S = x + V.

The other direction is simple, just use the fact that V is a linear subspace.

Now suppose $S = x_1 + V_1 = x_2 + V_2$, where $x_1, x_2 \in S$, V_1, V_2 are linear subspaces. Then $x_1 - x_2 + V_1 = V_2$. Since V_2 is a subspace, $x_1 - x_2 \in V_1$. So $V_2 = x_1 - x_2 + V_1 \subseteq V_1$. Similarly, $V_1 \subseteq V_2$. Therefore V is unique.

Since S = x + V, so $V = S - x \subseteq S - S$. Let $u, v \in S$ and z = u - v. Then S - v = V by the uniqueness of V. So $z \in S - v = V$ and hence $S - S \subseteq V$. \Box

Definition:(Dimension of affine and convex sets) The dimension of aff(X) is defined to be the dimension of the subspace parallel to X. The dimension of a convex set C is defined to be the dimension of aff(C).