1 Convex Sets and Functions

1.1 Convex Sets

Definition:(Convex sets) A subset C of \mathbb{R}^{n} is called convex if

$$
\lambda x+(1-\lambda) y \in C, \forall x, y \in C, \forall \lambda \in[0,1]
$$

Geometrically, it just means that the line segment joining any two points in a convex set C lies in C.

Figure 1: Convex and non-convex set
Definition:(Convex combination) Given $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$, an element in the form $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$, where $\sum_{i=1}^{m} \lambda_{i}=1$ and $\lambda_{i} \geq 0$ is called a convex combination of x_{1}, \ldots, x_{m}.

Proposition: A subset C of \mathbb{R}^{n} is convex if and only if contains all convex combination of its element.

Proof. Suppose C is convex. We will show by induction that it contains all convex combination $\sum_{i=1}^{m} \lambda_{i} x_{i}$ of its elements.
The case $m=1,2$ is trivial, so suppose all convex combination of k elements lies in C, where $k \leq m$. Consider

$$
x:=\sum_{i=1}^{m+1} \lambda_{i} x_{i}, \text { where } \sum_{i=1}^{m+1} \lambda_{i}=1
$$

If $\lambda_{m+1}=1$, then $\lambda_{1}=\cdot=\lambda_{m}=0$. Then $x \in C$. So assume $\lambda_{m+1}<1$, then

$$
\sum_{i=1}^{m} \lambda_{i}=1-\lambda_{m+1} \text { and } \sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}}=1
$$

Then $y=\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} x_{i} \in C$. Hence

$$
x=\left(1-\lambda_{m+1}\right) y+\lambda_{m+1} x_{m+1} \in C
$$

The other direction is trivial.

Proposition: Let C_{1} be a convex set of \mathbb{R}^{n} and let C_{2} be a convex set pf \mathbb{R}^{m}. Then the Cartesian product $C_{1} \times C_{2}$ is a convex subset of $\mathbb{R}^{n} \times \mathbb{R}^{m}$.

1.1.1 Examples of Convex Sets

(a) Open and closed balls in \mathbb{R}^{n}.
(b) Hyperplanes: $\left\{x:\langle a, x\rangle=b, a \in \mathbb{R}^{n}, b \in \mathbb{R}\right\}$.
(c) Halfspaces: $\left\{x:\langle a, x\rangle \leq b, a \in \mathbb{R}^{n}, b \in \mathbb{R}\right\}$.
(d) Non-Negative Orthant: $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}$.
(e) Convex cones: C is called a cone if $\alpha x \in C, \forall \alpha>0, x \in C$. A cone which is convex is called a convex cone.

Figure 2: Examples of convex sets

Proposition: Let $\left\{C_{i} \mid i \in \mathrm{I}\right\}$ be a collection of convex sets. Then:
(a) $\cap_{i \in I} C_{i}$ is convex, where each C_{i} is convex.
(b) $C_{1}+C_{2}=\left\{x+y \mid x \in C_{1}, y \in C_{2}\right\}$ is convex.
(c) λC is convex for any convex sets C and scalar λ. Furthermore, $\left(\lambda_{1}+\lambda_{2}\right) C=$ $\lambda_{1} C+\lambda_{2} C$ for positive λ_{1}, λ_{2}.
(d) $C^{\text {o }}, \bar{C}$ are convex, i.e. the interior and closure of a convex set are convex.
(e) $T(C), T^{-1}(C)$ are convex, where T is a linear map.

Proof. Parts (a)-(c), (e) follows from the definition (Exercise!). Let's prove (d). Interior Let $x, y \in C^{\circ}$. Then there exists r such that balls with radius r centred at x and y are both inside C.
Suppose $\lambda \in[0,1]$ and $\|z\|<r$. By convexity of C, we have,

$$
\lambda x+(1-\lambda) y+z=\lambda(x+z)+(1-\lambda)(y+z) \in C
$$

Therefore, $\lambda x+(1-\lambda) y \in C^{\circ}$. Hence C° is convex.
Closure Let $x, y \in \bar{C}$. Then there exists sequences $\left\{x_{k}\right\} \subset C,\left\{y_{k}\right\} \subset C$ such that $x_{k} \rightarrow x, y_{k} \rightarrow y$. Suppose $\alpha \in[0,1]$. Then for each k ,

$$
\lambda x_{k}+(1-\lambda) y_{k} \in C
$$

But $\lambda x_{k}+(1-\lambda) y_{k} \rightarrow \lambda x+(1-\lambda) y \in \bar{C}$. Hence, \bar{C} is convex.

1.2 Convex and Affine Hulls

1.2.1 Convex Hull

Definition:(Convex Hull)

Let X be a subset of \mathbb{R}^{n}. The convex hull of X is defined by

$$
\operatorname{conv}(X):=\bigcap\{C \mid C \text { is convex and } X \subseteq C\}
$$

In other words, $\operatorname{conv}(X)$ is the smallest convex set containing X.
The next proposition provides a good representation for elements in the convex hull.

Proposition: For any subset X of \mathbb{R}^{n},

$$
\operatorname{conv}(X)=\left\{\sum_{i=1}^{m} \lambda_{i} x_{i} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0, x_{i} \in X\right\}
$$

Proof. Let $C=\left\{\sum_{i=1}^{m} \lambda_{i} x_{i} \mid \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0, x_{i} \in X\right\}$. Clearly, $X \subseteq C$. Next, we check that C is convex.
Let $a=\sum_{i=1}^{p} \alpha_{i} a_{i}, b=\sum_{j=1}^{q} \beta_{j} b_{j}$ be elements of C, where $a_{i}, b_{i} \in C$ with $\alpha_{i}, \beta_{j} \geq 0$ and $\sum \alpha_{i}=\sum \beta_{j}=1$. Suppose $\lambda \in[0,1]$, then

$$
\lambda a+(1-\lambda) b=\sum_{i=1}^{p} \lambda \alpha_{i} a_{i}+\sum_{j=1}^{q}(1-\lambda) \beta_{j} b_{j} .
$$

Since

$$
\sum_{i=1}^{p} \lambda \alpha_{i}+\sum_{j=1}^{q}(1-\lambda) \beta_{j}=\lambda \sum_{i=1}^{p} \alpha_{i}+(1-\lambda) \sum_{j=1}^{q} \beta_{j}=1
$$

we have $\lambda a+(1-\lambda) b \in C$. Hence, C is convex. Also, $\operatorname{conv}(X) \subseteq C$ by the definition of $\operatorname{conv}(X)$.
Suppose $a=\sum \lambda_{i} a_{i} \in C$. Then since each $a_{i} \in X \subseteq \operatorname{conv}(X)$ and $\operatorname{conv}(X)$ is convex, we have $a \in \operatorname{conv}(X)$. Therefore, $\operatorname{conv}(X)=C$.

Figure 3: Examples of convex hull

Let $a, b \in \mathbb{R}^{n}$, define the interval

$$
[a, b):=\{\lambda a+(1-\lambda) b \mid \lambda \in(0,1]\}
$$

The intervals $(a, b],(a, b)$ are defined similarly.
Lemma: For a convex set $C \in \mathbb{R}^{n}$ with nonempty interior, take $a \in C^{\circ}$ and $b \in \bar{C}$. Then $[a, b) \subset C^{\circ}$.

Proof. Since $b \in \bar{C}$, for any $\epsilon>0$, we have $b \in C+\epsilon \mathbf{B}$, where \mathbf{B} denotes the closed unit ball centered at 0 .
Take $\lambda \in(0,1]$ and let $x_{\lambda}:=\lambda a+(1-\lambda) b$. Let ϵ be such that $a+\epsilon \frac{2-\lambda}{\lambda} \mathbf{B} \subset C$.

$$
\begin{aligned}
x_{\lambda}+\epsilon \mathbf{B} & =\lambda a+(1-\lambda) b+\epsilon \mathbf{B} \\
& \subset \lambda a+(1-\lambda)[C+\epsilon \mathbf{B}]+\epsilon \mathbf{B} \\
& =\lambda a+(1-\lambda) C+(2-\lambda) \epsilon \mathbf{B} \\
& \subset \lambda\left[a+\epsilon \frac{2-\lambda}{\lambda} \mathbf{B}\right]+(1-\lambda) C \\
& \subset \lambda C+(1-\lambda) C \subset C
\end{aligned}
$$

Hence $x_{\lambda} \in C^{\circ}$ and $[a, b) \subset C^{\circ}$.

1.2.2 Affine Sets and Affine Hull

Given $a, b \in \mathbb{R}^{n}$, the line connecting them is defined as

$$
\mathcal{L}[a, b]:=\{\lambda a+(1-\lambda) b \mid \lambda \in \mathbb{R}\}
$$

Note that there is no restriction on λ.
Definition:(Affine Set) A subset S of \mathbb{R}^{n} is affine if for any $a, b \in S$, we have $\mathcal{L}[a, b] \subseteq S$.

Definition:(Affine Combination)

Given $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$, an element in the form $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$, where $\sum_{i=1}^{m} \lambda_{i}=$ 1 is called an affine combination of x_{1}, \ldots, x_{m}.

Proposition: A set S is affine if and only if it contains all affine combination of its elements.

Definition:(Affine Hull) The affine hull of a set $X \subseteq \mathbb{R}^{n}$ is

$$
\operatorname{aff}(X):=\bigcap\{S \mid S \text { is affine and } X \subseteq S\}
$$

Proposition: For any subset X of \mathbb{R}^{n},

$$
\operatorname{aff}(X)=\left\{\sum_{i=1}^{m} \lambda_{i} x_{i} \mid \sum_{i=1}^{m} \lambda_{i}=1, x_{i} \in X\right\}
$$

In fact, an affine set $S \subset \mathbb{R}^{n}$ is of the form $x+V$, where $x \in S$ and V is a vector space called the subspace parallel to S.

Figure 4: Affine hull and the parallel subspace

Lemma: Let S be nonempty. Then the following are equivalent:

1. S is affine
2. S is of the form $x+V$ for some subspace $V \subset \mathbb{R}^{n}$ and $x \in S$.

Also, V is unique and equals to $S-S$.
Proof. Suppose S is affine. We first assume $0 \in S$. Let $x \in S$ and $\gamma \in \mathbb{R}$. Since $0 \in S$, we have $\gamma x+(1-\gamma) 0=\gamma x \in S$. Now, suppose $x, y \in S$. Then $x+y=$ $2\left(\frac{1}{2} x+\frac{1}{2} y\right) \in S$. Hence, S is closed under addition and scalar multiplication. Therefore, $S=0+S$ is a linear subspace. If $0 \notin S$, then $0 \in S-x$ for any $x \in S$. So $S-x$ is a linear subspace. Therefore, $S=x+V$.
The other direction is simple, just use the fact that V is a linear subspace.
Now suppose $S=x_{1}+V_{1}=x_{2}+V_{2}$, where $x_{1}, x_{2} \in S, V_{1}, V_{2}$ are linear subspaces. Then $x_{1}-x_{2}+V_{1}=V_{2}$. Since V_{2} is a subspace, $x_{1}-x_{2} \in V_{1}$. So $V_{2}=x_{1}-x_{2}+V_{1} \subseteq V_{1}$. Similarly, $V_{1} \subseteq V_{2}$. Therefore V is unique.
Since $S=x+V$, so $V=S-x \subseteq S-S$. Let $u, v \in S$ and $z=u-v$. Then $S-v=V$ by the uniqueness of V. So $z \in S-v=V$ and hence $S-S \subseteq V$.

Definition:(Dimension of affine and convex sets) The dimension of aff (X) is defined to be the dimension of the subspace parallel to X. The dimension of a convex set C is defined to be the dimension of $\operatorname{aff}(C)$.

