
1 Convex Sets and Functions

1.1 Convex Sets

Definition:(Convex sets) A subset C of Rn is called convex if

λx+ (1− λ)y ∈ C, ∀ x, y ∈ C, ∀λ ∈ [0, 1].

Geometrically, it just means that the line segment joining any two points in a
convex set C lies in C.

Figure 1: Convex and non-convex set

Definition:(Convex combination) Given x1, ..., xm ∈ Rn, an element in the
form x =

∑m
i=1 λixi, where

∑m
i=1 λi = 1 and λi ≥ 0 is called a convex combina-

tion of x1, ..., xm.

Proposition: A subset C of Rn is convex if and only if contains all convex
combination of its element.

Proof. Suppose C is convex. We will show by induction that it contains all
convex combination

∑m
i=1 λixi of its elements.

The case m = 1, 2 is trivial, so suppose all convex combination of k elements
lies in C, where k ≤ m. Consider

x :=

m+1∑
i=1

λixi, where

m+1∑
i=1

λi = 1

If λm+1 = 1, then λ1 = · = λm = 0. Then x ∈ C. So assume λm+1 < 1, then

m∑
i=1

λi = 1− λm+1 and

m∑
i=1

λi
1− λm+1

= 1

Then y =
∑m
i=1

λi

1−λm+1
xi ∈ C. Hence

x = (1− λm+1)y + λm+1xm+1 ∈ C
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The other direction is trivial.

Proposition: Let C1 be a convex set of Rn and let C2 be a convex set pf Rm.
Then the Cartesian product C1 × C2 is a convex subset of Rn × Rm.

1.1.1 Examples of Convex Sets

(a) Open and closed balls in Rn.

(b) Hyperplanes: {x : 〈a, x〉 = b, a ∈ Rn, b ∈ R}.

(c) Halfspaces: {x : 〈a, x〉 ≤ b, a ∈ Rn, b ∈ R}.

(d) Non-Negative Orthant : Rn+ = {x ∈ Rn : x ≥ 0}.

(e) Convex cones: C is called a cone if αx ∈ C,∀α > 0, x ∈ C. A cone which
is convex is called a convex cone.

Figure 2: Examples of convex sets

Proposition: Let {Ci | i ∈ I} be a collection of convex sets. Then:

(a) ∩i∈ICi is convex, where each Ci is convex.

(b) C1 + C2 = {x+ y | x ∈ C1, y ∈ C2} is convex.

(c) λC is convex for any convex sets C and scalar λ. Furthermore, (λ1+λ2)C =
λ1C + λ2C for positive λ1, λ2.

(d) Co, C are convex, i.e. the interior and closure of a convex set are convex.

(e) T (C), T−1(C) are convex, where T is a linear map.
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Proof. Parts (a)-(c), (e) follows from the definition (Exercise!). Let’s prove (d).
Interior Let x, y ∈ Co. Then there exists r such that balls with radius r centred
at x and y are both inside C.
Suppose λ ∈ [0, 1] and ||z|| < r. By convexity of C, we have,

λx+ (1− λ)y + z = λ(x+ z) + (1− λ)(y + z) ∈ C

Therefore, λx+ (1− λ)y ∈ Co. Hence Co is convex.
Closure Let x, y ∈ C. Then there exists sequences {xk} ⊂ C, {yk} ⊂ C such
that xk → x, yk → y. Suppose α ∈ [0, 1]. Then for each k,

λxk + (1− λ)yk ∈ C

But λxk + (1− λ)yk → λx+ (1− λ)y ∈ C. Hence, C is convex.

1.2 Convex and Affine Hulls

1.2.1 Convex Hull

Definition:(Convex Hull)
Let X be a subset of Rn. The convex hull of X is defined by

conv(X) :=
⋂
{C| C is convex and X ⊆ C}

In other words, conv(X) is the smallest convex set containing X.
The next proposition provides a good representation for elements in the convex
hull.

Proposition: For any subset X of Rn,

conv(X) =
{ m∑
i=1

λixi|
m∑
i=1

λi = 1, λi ≥ 0, xi ∈ X
}

Proof. Let C =
{∑m

i=1 λixi|
∑m
i=1 λi = 1, λi ≥ 0, xi ∈ X

}
. Clearly, X ⊆ C.

Next, we check that C is convex.
Let a =

∑p
i=1 αiai, b =

∑q
j=1 βjbj be elements of C, where ai, bi ∈ C with

αi, βj ≥ 0 and
∑
αi =

∑
βj = 1. Suppose λ ∈ [0, 1], then

λa+ (1− λ)b =

p∑
i=1

λαiai +

q∑
j=1

(1− λ)βjbj .

Since
p∑
i=1

λαi +

q∑
j=1

(1− λ)βj = λ

p∑
i=1

αi + (1− λ)

q∑
j=1

βj = 1

we have λa + (1 − λ)b ∈ C. Hence, C is convex. Also, conv(X) ⊆ C by the
definition of conv(X).
Suppose a =

∑
λiai ∈ C. Then since each ai ∈ X ⊆ conv(X) and conv(X) is

convex, we have a ∈ conv(X). Therefore, conv(X) =C.
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Figure 3: Examples of convex hull

Let a, b ∈ Rn, define the interval

[a, b) := {λa+ (1− λ)b| λ ∈ (0, 1]}

The intervals (a, b], (a, b) are defined similarly.

Lemma: For a convex set C ∈ Rn with nonempty interior, take a ∈ Co and
b ∈ C. Then [a, b) ⊂ Co.

Proof. Since b ∈ C, for any ε > 0, we have b ∈ C + εB, where B denotes the
closed unit ball centered at 0.
Take λ ∈ (0, 1] and let xλ := λa+ (1− λ)b. Let ε be such that a+ ε 2−λλ B ⊂ C.

xλ + εB = λa+ (1− λ)b+ εB

⊂ λa+ (1− λ)[C + εB] + εB

= λa+ (1− λ)C + (2− λ)εB

⊂ λ[a+ ε
2− λ
λ

B] + (1− λ)C

⊂ λC + (1− λ)C ⊂ C

Hence xλ ∈ Co and [a, b) ⊂ Co.

1.2.2 Affine Sets and Affine Hull

Given a, b ∈ Rn, the line connecting them is defined as

L[a, b] := {λa+ (1− λ)b| λ ∈ R}

Note that there is no restriction on λ.

Definition:(Affine Set) A subset S of Rn is affine if for any a, b ∈ S, we
have L[a, b] ⊆ S.
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Definition:(Affine Combination)
Given x1, ..., xm ∈ Rn, an element in the form x =

∑m
i=1 λixi, where

∑m
i=1 λi =

1 is called an affine combination of x1, ..., xm.

Proposition: A set S is affine if and only if it contains all affine combina-
tion of its elements.

Definition:(Affine Hull) The affine hull of a set X ⊆ Rn is

aff(X) :=
⋂
{S| S is affine and X ⊆ S}

Proposition: For any subset X of Rn,

aff(X) =
{ m∑
i=1

λixi|
m∑
i=1

λi = 1, xi ∈ X
}

In fact, an affine set S ⊂ Rn is of the form x + V , where x ∈ S and V is a
vector space called the subspace parallel to S.

Figure 4: Affine hull and the parallel subspace
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Lemma: Let S be nonempty. Then the following are equivalent:

1. S is affine

2. S is of the form x+ V for some subspace V ⊂ Rn and x ∈ S.

Also, V is unique and equals to S − S.

Proof. Suppose S is affine. We first assume 0 ∈ S. Let x ∈ S and γ ∈ R. Since
0 ∈ S, we have γx + (1 − γ)0 = γx ∈ S. Now, suppose x, y ∈ S. Then x + y =
2( 1

2x + 1
2y) ∈ S. Hence, S is closed under addition and scalar multiplication.

Therefore, S = 0 + S is a linear subspace. If 0 /∈ S, then 0 ∈ S − x for any
x ∈ S. So S − x is a linear subspace. Therefore, S = x+ V .
The other direction is simple, just use the fact that V is a linear subspace.
Now suppose S = x1 + V1 = x2 + V2, where x1, x2 ∈ S, V1, V2 are linear
subspaces. Then x1 − x2 + V1 = V2. Since V2 is a subspace, x1 − x2 ∈ V1. So
V2 = x1 − x2 + V1 ⊆ V1. Similarly, V1 ⊆ V2. Therefore V is unique.
Since S = x + V, so V = S − x ⊆ S − S. Let u, v ∈ S and z = u − v. Then
S− v = V by the uniqueness of V . So z ∈ S− v = V and hence S−S ⊆ V .

Definition:(Dimension of affine and convex sets) The dimension of aff(X)
is defined to be the dimension of the subspace parallel to X. The dimension of
a convex set C is defined to be the dimension of aff(C).
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