Recall

Projection and decomposition in Banach spaces

Let X be a Banach space. A bounded linear operator $P \in B(X, X)$ is a projection if $P^2 = P$ (*idempotent*). For any projection P, we have $X = \text{Im}(P) \oplus \text{Ker}(P)$. A closed subspace $M \subset X$ is complemented if there exists a closed subspace $N \subset X$ such that $X = M \oplus N$.

- closed subspace $M \subset X$ complemented $\iff \exists$ projection P with Im(P) = M.
- Any finite dimensional subspace in normed space is complemented.
- c_0 is not complemented in ℓ^{∞} and $c_0 \neq X^*$ for any normed space X.
- (Dixmier) Let $i: X \to X^{**}$ and $j: X^* \to X^{***}$ be the natural embeddings.

$$\begin{array}{cccc} X^* & \xleftarrow{i^*} & X^{***} \\ & & & & \\ & & & & \\ X & \xrightarrow{i} & X^{**} \end{array}$$

By viewing X as a subspace of X^{**} , the projection $D \coloneqq j \circ i^*$ implies

$$X^{***} = \operatorname{Im}(D) \oplus \operatorname{Ker}(D) = X^* \oplus X^{\perp},$$

where the annihilator $X^{\perp} := \{ y \in X^{***} : y(x) = 0, \forall x \in X \}$. In particular, letting $X = c_0$, we have $(\ell^{\infty})^* = \ell^1 \oplus c_0^{\perp}$.

• By further considering norms on direct sum, we denote $X = M \oplus_{\ell_1} N$ if $X = M \oplus N$ and ||x|| = ||y|| + ||z|| for every x = y + z with $y \in M, z \in N$. Then

$$(\ell^{\infty})^* = \ell^1 \oplus_{\ell_1} c_0^{\perp}.$$

About norm and inner product

Example 1. C[0,1] with sup-norm $\|\cdot\|_{\infty}$ is not an inner product space.

Proof. We prove by showing $\|\cdot\|_{\infty}$ does not satisfy Parallelogram Law.

Consider functions x(t) = 1 and y(t) = t for $t \in [0, 1]$. Then

$$\|x\|_{\infty} = 1 \quad \text{and} \quad \|y\|_{\infty} = 1$$

while

$$||x+y||_{\infty} = \sup_{t \in [0,1]} (1+t) = 2$$
 and $||x-y||_{\infty} = \sup_{t \in [0,1]} (1-t) = 1.$

Hence

$$\|x+y\|_{\infty}^{2} + \|x-y\|_{\infty}^{2} = 5 \neq 4 = 2(\|x\|_{\infty}^{2} + \|y\|_{\infty}^{2}).$$

Theorem 2 (Polarization identities). If X is a real inner product space, then

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2), \quad \forall x, y \in X.$$
 (1)

For a complex inner product space X, we have

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right), \quad \forall x, y \in X.$$
(2)

Proof. (i) (Real case) By the bilinearity of real inner product,

$$||x + y||^{2} = \langle x + y, x + y \rangle = ||x||^{2} + 2\langle x, y \rangle + ||y||^{2}$$
(3)

$$||x - y||^{2} = \langle x - y, x - y \rangle = ||x||^{2} - 2\langle x, y \rangle + ||y||^{2}.$$
(4)

Then (1) is obtained by simplifying (3) - (4).

(ii) (Complex case) By the sequilinearity of complex inner product,

$$\|x+y\|^{2} = \|x\|^{2} + \langle x, y \rangle + \overline{\langle x, y \rangle} + \|y\|^{2} = \|x\|^{2} + 2\Re\langle x, y \rangle + \|y\|^{2}$$
(5)
$$\|x-y\|^{2} = \|x\|^{2} - 2\Re\langle x, y \rangle + \|y\|^{2}$$
(6)

$$\|x - y\|^{2} = \|x\|^{2} - i\langle x, y \rangle + \|y\|^{2} = \|x\|^{2} + 2\Im\langle x, y \rangle + \|y\|^{2}$$
(6)
$$\|x + iy\|^{2} = \|x\|^{2} - i\langle x, y \rangle + i\overline{\langle x, y \rangle} + \|y\|^{2} = \|x\|^{2} + 2\Im\langle x, y \rangle + \|y\|^{2}$$
(7)

$$\|x - iy\|^2 = \|x\|^2 - 2\Im\langle x, y \rangle + \|y\|^2.$$
(8)

Then $\Re\langle x, y \rangle$ follows from (5) - (6) and $\Im\langle x, y \rangle$ follows from (7) - (8), thus (2).

Example 3. Let X be a normed space with norm $\|\cdot\|$. Then

 $\|\cdot\|$ is induced by an inner product $\iff \|\cdot\|$ satisfies the Parallelogram Law.

Proof. \implies is the property of inner product.

Since it is fun and meaningful to check \iff by ourselves, we omit the details but leave a possible sketch: Define $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{C}$ as (2). Then $\langle x, x \rangle \geq 0$ and $\langle y, x \rangle = \overline{\langle x, y \rangle}$ directly follows from (2). As for the linearity on the first argument, firstly we can prove the additivity $\langle x + \tilde{x}, y \rangle = \langle x, y \rangle + \langle \tilde{x}, y \rangle$ via Parallelogram Law. To achieve $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$, we may check in the following order

additivity
$$\rightarrow \alpha \in \mathbb{N} \xrightarrow{``-"} \alpha \in \mathbb{Z} \xrightarrow{``n/m"} \alpha \in \mathbb{Q} \xrightarrow{\text{continuity}} \alpha \in \mathbb{R} \xrightarrow{``i"} \alpha \in \mathbb{C}.$$