Recall

Projection and decomposition in Banach spaces

Let X be a Banach space. A bounded linear operator $P \in B(X, X)$ is a projection if $P^{2}=P$ (idempotent). For any projection P, we have $X=\operatorname{Im}(P) \oplus \operatorname{Ker}(P)$. A closed subspace $M \subset X$ is complemented if there exists a closed subspace $N \subset X$ such that $X=M \oplus N$.

- closed subspace $M \subset X$ complemented $\Longleftrightarrow \exists$ projection P with $\operatorname{Im}(P)=M$.
- Any finite dimensional subspace in normed space is complemented.
- c_{0} is not complemented in ℓ^{∞} and $c_{0} \neq X^{*}$ for any normed space X.
- (Dixmier) Let $i: X \rightarrow X^{* *}$ and $j: X^{*} \rightarrow X^{* * *}$ be the natural embeddings.

By viewing X as a subspace of $X^{* *}$, the projection $D:=j \circ i^{*}$ implies

$$
X^{* * *}=\operatorname{Im}(D) \oplus \operatorname{Ker}(D)=X^{*} \oplus X^{\perp}
$$

where the annihilator $X^{\perp}:=\left\{y \in X^{* * *}: y(x)=0, \forall x \in X\right\}$. In particular, letting $X=c_{0}$, we have $\left(\ell^{\infty}\right)^{*}=\ell^{1} \oplus c_{0}^{\perp}$.

- By further considering norms on direct sum, we denote $X=M \oplus_{\ell_{1}} N$ if $X=M \oplus N$ and $\|x\|=\|y\|+\|z\|$ for every $x=y+z$ with $y \in M, z \in N$. Then

$$
\left(\ell^{\infty}\right)^{*}=\ell^{1} \oplus \ell_{1} c_{0}^{\perp} .
$$

About norm and inner product

Example 1. $C[0,1]$ with sup-norm $\|\cdot\|_{\infty}$ is not an inner product space.
Proof. We prove by showing $\|\cdot\|_{\infty}$ does not satisfy Parallelogram Law.
Consider functions $x(t)=1$ and $y(t)=t$ for $t \in[0,1]$. Then

$$
\|x\|_{\infty}=1 \quad \text { and } \quad\|y\|_{\infty}=1
$$

while

$$
\|x+y\|_{\infty}=\sup _{t \in[0,1]}(1+t)=2 \quad \text { and } \quad\|x-y\|_{\infty}=\sup _{t \in[0,1]}(1-t)=1 .
$$

Hence

$$
\|x+y\|_{\infty}^{2}+\|x-y\|_{\infty}^{2}=5 \neq 4=2\left(\|x\|_{\infty}^{2}+\|y\|_{\infty}^{2}\right) .
$$

Theorem 2 (Polarization identities). If X is a real inner product space, then

$$
\begin{equation*}
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right), \quad \forall x, y \in X \tag{1}
\end{equation*}
$$

For a complex inner product space X, we have

$$
\begin{equation*}
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right), \quad \forall x, y \in X \tag{2}
\end{equation*}
$$

Proof. (i) (Real case) By the bilinearity of real inner product,

$$
\begin{align*}
& \|x+y\|^{2}=\langle x+y, x+y\rangle=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2} \tag{3}\\
& \|x-y\|^{2}=\langle x-y, x-y\rangle=\|x\|^{2}-2\langle x, y\rangle+\|y\|^{2} . \tag{4}
\end{align*}
$$

Then (1) is obtained by simplifying (3) - (4).
(ii) (Complex case) By the sequilinearity of complex inner product,

$$
\begin{align*}
\|x+y\|^{2} & =\|x\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle}+\|y\|^{2}=\|x\|^{2}+2 \Re\langle x, y\rangle+\|y\|^{2} \tag{5}\\
\|x-y\|^{2} & =\|x\|^{2}-2 \Re\langle x, y\rangle+\|y\|^{2} \tag{6}\\
\|x+i y\|^{2} & =\|x\|^{2}-i\langle x, y\rangle+\overline{i\langle x, y\rangle}+\|y\|^{2}=\|x\|^{2}+2 \Im\langle x, y\rangle+\|y\|^{2} \tag{7}\\
\|x-i y\|^{2} & =\|x\|^{2}-2 \Im\langle x, y\rangle+\|y\|^{2} . \tag{8}
\end{align*}
$$

Then $\Re\langle x, y\rangle$ follows from (5) - (6) and $\Im\langle x, y\rangle$ follows from (7) - (8), thus (2).

Example 3. Let X be a normed space with norm $\|\cdot\|$. Then
$\|\cdot\|$ is induced by an inner product $\Longleftrightarrow\|\cdot\|$ satisfies the Parallelogram Law.
Proof. \Longrightarrow is the property of inner product.
Since it is fun and meaningful to check \Longleftarrow by ourselves, we omit the details but leave a possible sketch: Define $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{C}$ as (2). Then $\langle x, x\rangle \geq 0$ and $\langle y, x\rangle=\overline{\langle x, y\rangle}$ directly follows from (2). As for the linearity on the first argument, firstly we can prove the additivity $\langle x+\tilde{x}, y\rangle=\langle x, y\rangle+\langle\tilde{x}, y\rangle$ via Parallelogram Law. To achieve $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$, we may check in the following order

$$
\text { additivity } \rightarrow \alpha \in \mathbb{N} \xrightarrow{\text { "-" }} \alpha \in \mathbb{Z} \xrightarrow{"_{n} / m^{"}} \alpha \in \mathbb{Q} \xrightarrow{\text { continuity }} \alpha \in \mathbb{R} \xrightarrow{\text { "i" }^{\prime \prime}} \alpha \in \mathbb{C} \text {. }
$$

