Recall

Fundamental theorems

- Open Mapping Theorem Let X, Y be **Banach** spaces. Let $T \in B(X, Y)$ be surjective. Then T is a open mapping.
 - · Let $T \in B(X, Y)$ be a linear isomorphism. Then T^{-1} is bounded.
 - For $A \in B(X, Y)$, denote the image of A by Im(A). Let $T, K \in B(X, Y)$. { Im(T) closed & dim $\text{Im}(K) < \infty$ } \implies Im(T + K) is closed. However, if weaken dim $\text{Im}(K) < \infty$ to Im(K) being closed, then \implies may not hold.
- Closed Graph Theorem Let X, Y be **Banach** spaces. Let $T: X \to Y$ be a linear operator. Then T is bounded $\iff T$ has closed graph, i.e., $\mathscr{G}(T) \coloneqq \{(x, Tx) \colon x \in X\}$ is closed in $(X \oplus Y, \|\cdot\|_{\infty}).$
 - · Let $G: Y^* \to X^*$ be a w^*-w^* continuous linear map. Then (i) $G \in B(Y^*, X^*)$. (ii) $\exists T \in B(X, Y)$ such that $T^* = G$.
- Uniform Boundedness Theorem Let X be a **Banach** space and Y be a normed space. Let $(T_i)_{i \in I}$ be a family of bounded linear operators from X to Y. Suppose for all $x \in X$, we have $\sup_{i \in I} ||T_i(x)|| < \infty$. Then $\sup_{i \in I} ||T_i|| < \infty$.
 - · Let $(T_n)_{n=1}^{\infty} \in B(X, Y)$. Suppose $\lim_{n \to \infty} T_n(x)$ exists in Y for all $x \in X$. Then there exists $T \in B(X, Y)$ such that $T(x) = \lim_{n \to \infty} T_n(x)$ for all $x \in X$ and $||T|| \leq \liminf_{n \to \infty} ||T_n||$.
 - \cdot Weakly convergent sequences in normed spaces are bounded.

To prove the above theorems, it is essential to exploit the completeness of Banach spaces via *Baire Category Theorem*.

Examples to illustrate the theorems

To prove a map is open, Open Mapping Theorem is sufficient but not necessary. The following example shows that a surjective bounded mapping $T: X \to Y$ may be open while X is not a Banach space.

Recall that a topological vector space is a vector space equipped with a (Tychonoff) topology in which the vector space operations are continuous.

Example 1. Let X be a nontrivial topological vector space. Let f be any nonzero continuous functional on X, i.e, $0 \neq f \in X^*$. Then f is open.

Proof. By the translation-invariance of the vector topology on X, it suffices to prove f(V) is open in scalar field \mathbb{C} for every open neighborhood of $0 \in X$.

Since $f \neq 0$, there exists $x_0 \in X$ such that $f(x_0) \neq 0$. By normalizing x_0 (w.r.t. f) to $x^* = x_0/f(x_0)$, we have $f(x^*) = 1$. Take any $y \in f(V)$. Then there exists $x \in V$ with f(x) = y.

Since both of the scalar multiplication and the addition are continuous and V is open, the map $r \mapsto x + rx^*$ is continuous and there exists $\delta > 0$ such that $x + rx^* \in V$ for all $|r| < \delta$. Then $y + r = f(x + rx^*) \in f(V)$ for all $|r| < \delta$. Then y is an interior point of f(V), thus f(V) is open for y is arbitrary.

The Banach space assumptions both on the domain X and the range Y in Open Mapping Theorem and Closed Graph Theorem are essential.

Example 2. Let $X = (\ell^1, \|\cdot\|_1)$ and $Y = (\ell^1, \|\cdot\|_\infty)$. Let T be the identity map from X onto Y. Then T is continuous but not open.

Proof. Let $x \in \ell^1$. Since $||x||_{\infty} \leq ||x||_1$, we have T is bounded.

For $n \in \mathbb{N}$, define $x_n(i) = \begin{cases} 1 & i \leq n \\ 0 & i > n \end{cases}$. Let $x_n = (x_n(i))_{i=1}^{\infty}$. Since $||x_n||_{\infty} = 1$ for all $n \in \mathbb{N}$ while $||x_n||_1 = n \to \infty$ as $n \to \infty$, we have T^{-1} is not bounded.

Next we check that Y is not complete. For $n \in \mathbb{N}$, define $x_n(i) = \begin{cases} 1/i & i \leq n \\ 0 & i > n \end{cases}$. Let $x_n = 0$

 $(x_n(i))_{i=1}^{\infty}$. Then $x_n \in \ell_1$ for all $n \in \mathbb{N}$. Moreover, $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence with respect to $\|\cdot\|_{\infty}$. Suppose on the contrary that there exists $x = (x(i))_{i=1}^{\infty} \in \ell_1$ such that $x_n \to x$ in $\|\cdot\|_{\infty}$. Since $|x(i) - x_n(i)| \leq \|x - x_n\|_{\infty}$ for all $i \in \mathbb{N}$, we have x(i) = 1/i for all $i \in \mathbb{N}$. Then $\sum_{i=1}^{\infty} x(i) = \sum_{i=1}^{\infty} 1/i = \infty$ contradicts $x \in \ell_1$. Hence $(\ell_1, \|\cdot\|_{\infty})$ is not complete.