
Tutorial 1 MATH4010 Functional Analysis 2021-09-16 Thursday

General information

• Tutor: Zhou Feng; Email: zfeng@math.cuhk.edu.hk;

• Tutorial time and venue: Th. 11:30–12:15, LHC 101;

• Course webpage: https://www.math.cuhk.edu.hk/course/2122/math4010

• References:

– Lecture Notes of Prof. Leung (available on course webpage)

– A. Bowers and N.J. Kalton, An introductory course in functional analysis, Springer,

(2014).

– E. Kreyszig, Introductory functional analysis with applications, John Wiley & Thusns

(1978).

– S. Ovchinnikov, Functional analysis, Springer, (2018).

• Structure of tutorials:

1. A quick recall of the lecture content in the previous week.

2. Explain examples and solve problems.

3. Q & A.

• All the suggestions and feedback are welcome. Any report of typos is appreciated.

Recall

A normed space is a vector space equipped with a norm (1. non-degenerate positivity 2. scaling

property 3. triangle inequality). A Banach space is a complete normed space. Besides the

definition by the convergence of Cauchy sequence, completeness can be characterized via series

[LN, Prop. 1.11]. For convenience, we use LN to refer the Lecture Notes.

Every normed space has a unique completion to Banach space which is implicitly given by

[LN, Prop. 1.15]. Every Banach space with Schauder basis is separable but the inverse is false (P.

Enflo 1973) (countering to Hilbert spaces).

Normed & Banach spaces

Example 1. Recall K = R or C. For every x = (x1, . . . , xn) ∈ Kn, define

‖x‖∞ := max
1≤i≤n

|xi| and ‖x‖p := (
n∑
i=1

|xi|p)1/p.

Then `n∞ := (Kn, ‖·‖∞) and `np := (Kn, ‖·‖p) are finite dimensional normed spaces.
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Proof. It is easily checked that ‖·‖∞ and ‖·‖p are positive, non-degenerate, and satisfy the scal-

ing property. The triangle inequalities follow from max1≤i≤n|xi + yi| ≤ max1≤i≤n(|xi| + |yi|) ≤
max1≤i≤n|xi|+ max1≤i≤n|yi| and Minkowski inequality.

Example 2. For 1 ≤ p <∞, put

`p :=
{

(x(i))∞i=1 ∈ KN : (
∞∑
i=1

|x(i)|p)1/p <∞
}

Equip `p with the norm ‖x‖p := (
∑∞

i=1|x(i)|p)1/p for x ∈ `p. Then (`p, ‖·‖p), conventionally

denoted by `p, is a Banach space.

Proof. Let (xn)∞n=1 be a Cauchy sequence in `p with respect to ‖·‖p, i.e., ∀ ε > 0, ∃N ∈ N such

that ∀m,n ≥ N, ‖xm − xn‖p ≤ ε.

First, we find a candidate of the limit of (xn)∞n=1. Fix any i ∈ N. Since ∀m,n ∈ N, |xm(i) −
xn(i)| ≤ (

∑∞
j=1|xm(j)− xn(j)|p)1/p = ‖xm − xn‖p, we have (xn(i))∞n=1 is a Cauchy sequence in K.

By the completeness of K, there exists x(i) = limn→∞ xn(i). Hence we can define x = (x(i))∞i=1.

Next we check that x is indeed the limit of (xn)∞n=1 in `p. Fix any K ∈ N. For ∀ ε > 0, when

m,n are large enough,

(
K∑
i=1

|xm(i)− xn(i)|p)1/p ≤ (
∞∑
i=1

|xm(i)− xn(i)|p)1/p = ‖xm − xn‖p ≤ ε.

Since K is finite, letting m→∞, we have

(
K∑
i=1

|x(i)− xn(i)|p)1/p ≤ ε.

Since K is arbitrary, we have

‖x− xn‖p = (
∞∑
i=1

|x(i)− xn(i)|p)1/p = sup
K∈N

(
K∑
i=1

|x(i)− xn(i)|p)1/p ≤ ε.

Hence ‖x‖p ≤ ‖xn‖p + ε <∞ and x = limn→∞ xn in `p.

Observe that for any i ∈ N, |x(i)| ≤ ‖x‖p allows us to control the values on each index

directly by controlling ‖·‖p in `p, which makes it easier for us to find the candidate of limit. This

also happens for the sup-norm. However, the advantage of ‘pointwise control’ are not shared by

Lp, 1 ≤ p < ∞ (‘the space of p-th power integrable functions’) with integral norms. We need to

spend some extra efforts (i.e., Borel-Contelli) on searching for the candidate first, and then prove

the completeness.

Remark. During the part about Banach spaces, an important family of Banach spaces is `p, 1 ≤
p ≤ ∞ and c0. It is one of the major themes of our tutorials to understand the properties,

applications of important theorems, and relationships of `p and c0.

Example 3 (Inclusion relationship). `p ⊂ `q for 1 ≤ p ≤ q ≤ ∞. c00 = c0 ⊂ `∞.
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Proof. Let n ∈ N and 1 ≤ p ≤ q < ∞. For any numbers a1, . . . , an ≥ 0, it is easily checked,

e.g., by directly differentiating w.r.t. the exponent (after taking logarithm) or using the concavity

( =⇒ ‘subadditivity’ of xα, 0 ≤ α ≤ 1) in the tutorial, that

(
n∑
i=1

aqi )
1/q ≤ (

n∑
i=1

api )
1/p.

Letting n→∞, we have `p ⊂ `q. Notice that (
∑∞

i=1 a
p
i )

1/p <∞ =⇒ ∀ i ∈ N, ai ≤M <∞, thus

`p ⊂ `∞. The other statements are proved in lecture notes.

Remark. For Lp[0, 1], the inclusion relationship is reversed. (Why? The difference of counting

measure and Lebesgue measure matters.)

Example 4. Show that C[0, 1] is a Banach space under the sup-norm but it is not complete under

the ‖·‖1.

Proof. In Homework 1, we have proved C[0, 1] is a Banach space under sup-norm. The key to

prove the continuity of limiting function is to apply the arguments to change the limit process via

uniform convergence (see e.g. MATH2060).

(Check ‖·‖1 is indeed a norm on C[0, 1].) To prove C[0, 1] is not complete under ‖·‖1, we find

a Cauchy sequence (fn)∞n=1 ∈ C[0, 1] under ‖·‖1 but does not converge in C[0, 1]. For each n ∈ N,

define

fn(x) :=


0 , x ∈ [0, 1/2− 1/n)

n(x+ 1/n− 1/2) , x ∈ [1/2− 1/n, 1/2)

1 , x ∈ [1/2, 1].

It is readily checked that (fn)∞n=1 ∈ C[0, 1] is a Cauchy sequence under ‖·‖1. Suppose there exists

f ∈ C[0, 1] such that fn
‖·‖1−−→ f . We will obtain a contradiction by showing f = 0 on [0, 1/2) while

f = 1 on [1/2, 1], thus f /∈ C[0, 1].

For any x0 ∈ [0, 1/2). If f(x0) 6= 0, by continuity there exists ε0 > 0 and δ > 0 such

that |f(x)| > ε0 on [x0 − δ, x0 + δ]∩[0, 1]. Hence
∫
[x0−δ,x0+δ]∩[0,1]|f(x)|dx > δε0. However, since

fn
‖·‖1−−→ f , there exists N ∈ N such that fN = 0 on [x− δ, x+ δ] and∫

[x0−δ,x0+δ]∩[0,1]
|f(x)|dx =

∫
[x0−δ,x0+δ]∩[0,1]

|f(x)− fN(x)|dx ≤ ‖f − fn‖1 ≤ δε0/4,

which is a contradiction, thus f(x0) = 0. Hence f = 0 on [0, 1/2). A similar argument shows that

f = 1 on [1/2, 1]. Together we have f is not continuous at 1/2, thus f /∈ C[0, 1].

Remark. Example 4 shows that equipping an infinite dimensional vector space with different norms

may lead to different topologies (countering to the finite dimensional case). Recall the space of

Riemann integrable functions R[0, 1] (modulo a.e. vanishing functions) that is a little bit larger

than C[0, 1], is still not complete under ‖·‖1, which is one of the reasons why we are consider the

Banach space L1.
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