THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH4010 Functional Analysis 2021-22 Term 1

Solution to Homework 7

1. Let S be a bounded sesquilinear form on $X \times Y$. Define

$$
\|S\|:=\sup \{|S(x, y)|:\|x\|=1,\|y\|=1\} .
$$

Show that

$$
\|S\|=\sup \left\{\frac{|S(x, y)|}{\|x\|\|y\|}: x \in X \backslash\{0\}, y \in Y \backslash\{0\}\right\}
$$

and

$$
\begin{equation*}
|S(x, y)| \leq\|S\|\|x\|\|y\| \tag{1}
\end{equation*}
$$

for all $x \in X$ and $y \in Y$.
Proof. Denote

$$
\|S\|_{*}:=\sup \left\{\frac{|S(x, y)|}{\|x\|\|y\|}: x \in X \backslash\{0\}, y \in Y \backslash\{0\}\right\} .
$$

For any $x \in X, y \in Y$ with $\|x\|=1$ and $\|y\|=1$, we have $\|S(x, y)\|=\frac{|S(x, y)|}{\|x\|\|y\|} \leq\|S\|_{*}$. Hence $\|S\| \leq\|S\|_{*}$. On the other hand by the sesquilinearity of S, for any $x \in X \backslash\{0\}, y \in Y \backslash\{0\}$,

$$
\frac{|S(x, y)|}{\|x\|\|y\|}=\left|S\left(\frac{x}{\|x\|}, \frac{y}{\|y\|}\right)\right| \leq\|S\|
$$

where the last inequality holds since $x /\|x\|$ and $y /\|y\|$ are unit vectors, thus $\|S\|_{*} \leq\|S\|$. Together we have $\|S\|=\|S\|_{*}$.
Hence (1) holds for all $x \in X \backslash\{0\}, y \in Y \backslash\{0\}$. Since S is sesquilinear, we have

$$
\begin{aligned}
& S(0, y)=S(0+0, y)=2 S(0, y) \Longrightarrow S(0, y)=0 \\
& S(x, 0)=S(x, 0+0)=2 S(x, 0) \Longrightarrow S(x, 0)=0
\end{aligned}
$$

thus (1) also holds when $x=0 \in X$ or $y=0 \in Y$.
2. Let $T: \ell^{2} \rightarrow \ell^{2}$ be defined by

$$
T:\left(x_{1}, \ldots, x_{n}, \ldots\right) \mapsto\left(x_{1}, \ldots, \frac{1}{n} x_{n}, \ldots\right) .
$$

Show that the range $\mathcal{R}(T)$ is not closed in ℓ^{2}.

Proof. Suppose on the contrary that $\mathcal{R}(T)$ is closed in ℓ^{2}. Note that T is injective. It follows from Open Mapping Theorem that the map

$$
S: \mathcal{R}(T) \rightarrow \ell^{2},\left(y_{1}, \ldots, y_{n}, \ldots\right) \mapsto\left(y_{1}, \ldots, n y_{n}, \ldots\right)
$$

is bounded. However, for $n \in \mathbb{N}$, let $e_{n}=\left(e_{n}(i)\right)_{i=1}^{\infty}$ with $e_{n}(i)=\left\{\begin{array}{ll}1 & i=n \\ 0 & i \neq n\end{array}\right.$. Then $e_{n} \in \mathcal{R}(T)$ and $\left\|e_{n}\right\|=1$. Hence $\|S\| \geq\left\|S e_{n}\right\|=n \rightarrow \infty$ as $n \rightarrow \infty$, which contradicts the boundedness of S.
3. Let T be a bounded operator on a complex Hilbert space H.
(a) Show that the operators

$$
T_{1}=\frac{1}{2}\left(T+T^{*}\right) \quad \text { and } \quad T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)
$$

are self-adjoint.
(b) Show that T is normal if and only if the operators T_{1} and T_{2} commute.

Proof. (a) For all $x, y \in H$,

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\overline{\left\langle T^{*} y, x\right\rangle}=\overline{\left\langle y, T^{* *} x\right\rangle}=\left\langle T^{* *} x, y\right\rangle .
$$

Hence $T^{* *}=T$ since H is a complex Hilbert space. Then by $*: B(H) \rightarrow B(H)$ being a conjugate anti-isomorphism,

$$
\begin{aligned}
& T_{1}^{*}=\left(\frac{1}{2}\left(T+T^{*}\right)\right)^{*}=\frac{1}{2}\left(T^{*}+T^{* *}\right)=\frac{1}{2}\left(T^{*}+T\right)=T_{1} \\
& T_{2}^{*}=\left(\frac{1}{2 i}\left(T-T^{*}\right)\right)^{*}=-\frac{1}{2 i}\left(T^{*}-T^{* *}\right)=-\frac{1}{2 i}\left(T^{*}-T\right)=T_{2}
\end{aligned}
$$

(b) Since

$$
\begin{aligned}
& T_{1} T_{2}=\left(\frac{1}{2}\left(T+T^{*}\right)\right)\left(\frac{1}{2 i}\left(T-T^{*}\right)\right)=\frac{1}{4 i}\left(T^{2}+T^{*} T-T T^{*}+\left(T^{*}\right)^{2}\right) \\
& T_{2} T_{1}=\left(\frac{1}{2 i}\left(T-T^{*}\right)\right)\left(\frac{1}{2}\left(T+T^{*}\right)\right)=\frac{1}{4 i}\left(T^{2}+T T^{*}-T^{*} T+\left(T^{*}\right)^{2}\right)
\end{aligned}
$$

we have

$$
T_{1}, T_{2} \text { commute } \Longleftrightarrow T_{1} T_{2}=T_{2} T_{1} \Longleftrightarrow T^{*} T=T T^{*} \Longleftrightarrow T \text { normal. }
$$

