THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2021-22 Term 1 Solution to Homework 7

1. Let S be a bounded sesquilinear form on $X \times Y$. Define

$$||S|| := \sup \{ |S(x,y)| : ||x|| = 1, ||y|| = 1 \}.$$

Show that

$$||S|| = \sup\left\{\frac{|S(x,y)|}{||x|| ||y||} : x \in X \setminus \{0\}, \ y \in Y \setminus \{0\}\right\}$$

and

$$S(x,y)| \le ||S|| ||x|| ||y||, \tag{1}$$

for all $x \in X$ and $y \in Y$.

Proof. Denote

$$||S||_* := \sup\left\{\frac{|S(x,y)|}{||x|| ||y||} : x \in X \setminus \{0\}, \ y \in Y \setminus \{0\}\right\}$$

For any $x \in X, y \in Y$ with ||x|| = 1 and ||y|| = 1, we have $||S(x,y)|| = \frac{|S(x,y)|}{||x|| ||y||} \le ||S||_*$. Hence $||S|| \le ||S||_*$. On the other hand by the sesquilinearity of S, for any $x \in X \setminus \{0\}, y \in Y \setminus \{0\}$,

$$\frac{|S(x,y)|}{\|x\|\|y\|} = |S(\frac{x}{\|x\|}, \frac{y}{\|y\|})| \le \|S\|$$

where the last inequality holds since x/||x|| and y/||y|| are unit vectors, thus $||S||_* \leq ||S||$. Together we have $||S|| = ||S||_*$.

Hence (1) holds for all $x \in X \setminus \{0\}$, $y \in Y \setminus \{0\}$. Since S is sesquilinear, we have

$$S(0, y) = S(0 + 0, y) = 2S(0, y) \implies S(0, y) = 0$$

$$S(x, 0) = S(x, 0 + 0) = 2S(x, 0) \implies S(x, 0) = 0.$$

thus (1) also holds when $x = 0 \in X$ or $y = 0 \in Y$.

2. Let $T: \ell^2 \to \ell^2$ be defined by

$$T: (x_1, \ldots, x_n, \ldots) \mapsto (x_1, \ldots, \frac{1}{n}x_n, \ldots).$$

Show that the range $\mathcal{R}(T)$ is not closed in ℓ^2 .

Proof. Suppose on the contrary that $\mathcal{R}(T)$ is closed in ℓ^2 . Note that T is injective. It follows from Open Mapping Theorem that the map

$$S: \mathcal{R}(T) \to \ell^2, (y_1, \ldots, y_n, \ldots) \mapsto (y_1, \ldots, ny_n, \ldots)$$

is bounded. However, for $n \in \mathbb{N}$, let $e_n = (e_n(i))_{i=1}^{\infty}$ with $e_n(i) = \begin{cases} 1 & i = n \\ 0 & i \neq n \end{cases}$. Then $e_n \in \mathcal{R}(T)$ and $||e_n|| = 1$. Hence $||S|| \ge ||Se_n|| = n \to \infty$ as $n \to \infty$, which contradicts the boundedness of S.

- 3. Let T be a bounded operator on a complex Hilbert space H.
 - (a) Show that the operators

$$T_1 = \frac{1}{2}(T + T^*)$$
 and $T_2 = \frac{1}{2i}(T - T^*)$

are self-adjoint.

(b) Show that T is normal if and only if the operators T_1 and T_2 commute.

Proof. (a) For all $x, y \in H$,

$$\langle Tx, y \rangle = \langle x, T^*y \rangle = \overline{\langle T^*y, x \rangle} = \overline{\langle y, T^{**}x \rangle} = \langle T^{**}x, y \rangle.$$

Hence $T^{**} = T$ since H is a complex Hilbert space. Then by $*: B(H) \to B(H)$ being a conjugate anti-isomorphism,

$$T_1^* = \left(\frac{1}{2}(T+T^*)\right)^* = \frac{1}{2}(T^*+T^{**}) = \frac{1}{2}(T^*+T) = T_1,$$

$$T_2^* = \left(\frac{1}{2i}(T-T^*)\right)^* = -\frac{1}{2i}(T^*-T^{**}) = -\frac{1}{2i}(T^*-T) = T_2.$$

(b) Since

$$T_1T_2 = \left(\frac{1}{2}(T+T^*)\right) \left(\frac{1}{2i}(T-T^*)\right) = \frac{1}{4i}(T^2+T^*T-TT^*+(T^*)^2),$$

$$T_2T_1 = \left(\frac{1}{2i}(T-T^*)\right) \left(\frac{1}{2}(T+T^*)\right) = \frac{1}{4i}(T^2+TT^*-T^*T+(T^*)^2),$$

we have

$$T_1, T_2 \text{ commute } \iff T_1T_2 = T_2T_1 \iff T^*T = TT^* \iff T \text{ normal.}$$

$$-$$
 The end $-$