THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH4010 Functional Analysis 2021-22 Term 1

Solution to Homework 5

1. Let $\left(x_{n}\right)$ be a sequence in an inner product space. Show that the conditions $\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$ imply $x_{n} \rightarrow x$.

Proof. Note that $\left\|x-x_{n}\right\|^{2}=\left\langle x-x_{n}, x-x_{n}\right\rangle=\|x\|^{2}-2 \Re\left\langle x_{n}, x\right\rangle+\left\|x_{n}\right\|^{2}$.
It follows from $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$ that $\Re\left\langle x_{n}, x\right\rangle \rightarrow \Re\langle x, x\rangle=\langle x, x\rangle$ since $\Re: \mathbb{C} \rightarrow \mathbb{R}$ is continuous and $\langle x, x\rangle \geq 0$. Combining with with $\left\|x_{n}\right\| \rightarrow\|x\|$, we have

$$
\left\|x-x_{n}\right\|^{2} \rightarrow\|x\|^{2}-2\langle x, x\rangle+\|x\|^{2}=0, \quad \text { as } n \rightarrow \infty .
$$

Thus $x_{n} \rightarrow x$ in $\|\cdot\|$.
2. Show that

$$
X=\left\{x=\left(x_{n}\right) \in \ell^{2}: \sum_{n=1}^{\infty} \frac{x_{n}}{n}=0\right\}
$$

is a closed subspace of ℓ^{2}.
Proof. For $x=\left(x_{n}\right) \in \ell^{2}$, define

$$
f(x):=\sum_{n=1}^{\infty} \frac{x_{n}}{n} .
$$

Write $y=(1 / n)_{n=1}^{\infty}$. Note $\|y\|^{2}=\sum_{n=1}^{\infty} 1 / n^{2}<\infty$. For $x \in \ell^{2}$, by Cauchy-Schwarz inequality,

$$
|f(x)|=|\langle x, y\rangle| \leq\|x\|\|y\|<\infty .
$$

Hence f is well-defined and continuous since f is readily checked to be linear. Thus X is a closed subspace as the kernel of a linear continuous functional.
3. (a) Prove that for every two subspaces X_{1} and X_{2} of a Hilbert space,

$$
\left(X_{1}+X_{2}\right)^{\perp}=X_{1}^{\perp} \cap X_{2}^{\perp} .
$$

(b) Prove that for every two closed subspaces X_{1} and X_{2} of a Hilbert space,

$$
\left(X_{1} \cap X_{2}\right)^{\perp}=\overline{X_{1}^{\perp}+X_{2}^{\perp}} .
$$

Proof. (a) By $X_{1}, X_{2} \subset\left(X_{1}+X_{2}\right)$, we have $\left(X_{1}+X_{2}\right)^{\perp} \subset\left(X_{1}\right)^{\perp},\left(X_{2}\right)^{\perp}$, thus $\left(X_{1}+X_{2}\right)^{\perp} \subset$ $\left(X_{1}\right)^{\perp} \cap\left(X_{2}\right)^{\perp}$.
Let $x^{*} \in\left(X_{1}\right)^{\perp} \cap\left(X_{2}\right)^{\perp}$. Let $y \in X_{1}+X_{2}$ and write $y=x_{1}+x_{2}$ for some $x_{1} \in X_{1}, x_{2} \in X_{2}$. Then $\left\langle y, x^{*}\right\rangle=\left\langle x_{1}+x_{2}, x^{*}\right\rangle=\left\langle x_{1}, x^{*}\right\rangle+\left\langle x_{2}, x^{*}\right\rangle=0$. Hence $x^{*} \in\left(X_{1}+X_{2}\right)^{\perp}$, thus $\left(X_{1}\right)^{\perp} \cap\left(X_{2}\right)^{\perp} \subset\left(X_{1}+X_{2}\right)^{\perp}$. Together we have $\left(X_{1}+X_{2}\right)^{\perp}=\left(X_{1}\right)^{\perp} \cap\left(X_{2}\right)^{\perp}$.
(b) Since X_{1}, X_{2} are closed, we have $\left(X_{i}^{\perp}\right)^{\perp}=X_{i}, i=1,2$. Then by applying (a) to $X_{1}^{\perp}, X_{2}^{\perp}$, we have

$$
\left(X_{1}^{\perp}+X_{2}^{\perp}\right)^{\perp}=\left(X_{1}^{\perp}\right)^{\perp} \cap\left(X_{2}^{\perp}\right)^{\perp}=X_{1} \cap X_{2} .
$$

Hence

$$
\overline{X_{1}^{\perp}+X_{2}^{\perp}}=\left(\left(X_{1}^{\perp}+X_{2}^{\perp}\right)^{\perp}\right)^{\perp}=\left(X_{1} \cap X_{2}\right)^{\perp} .
$$

