THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH4010 Functional Analysis 2021-22 Term 1

Solution to Homework 4

1. If X and Y are Banach spaces and $T_{n}: X \rightarrow Y, n=1,2, \ldots$ a sequence of bounded linear operators, show that the following statements are equivalent:
(a) the sequence $\left(\left\|T_{n}\right\|\right)$ is bounded,
(b) the sequence $\left(\left\|T_{n} x\right\|\right)$ is bounded for every $x \in X$,
(c) the sequence $\left(\left|f\left(T_{n} x\right)\right|\right)$ is bounded for every $x \in X$ and every $f \in Y^{*}$.

Proof. We prove in the order $(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{a})$.
$(a) \Longrightarrow$ (b) There exists $M>0$ such that $\sup _{n}\left\|T_{n}\right\| \leq M$. Fix any $x \in X$. Then for all $n \in \mathbb{N}$,

$$
\left\|T_{n} x\right\| \leq\left\|T_{n}\right\|\|x\| \leq M\|x\|<\infty
$$

(b) \Longrightarrow (c) Fix any $x \in X$, there exists $M_{x}>0$ such that $\sup _{n}\left\|T_{n} x\right\| \leq M_{x}$. Fix any $f \in Y^{*}$. Then for all $n \in \mathbb{N}$,

$$
\left\|f\left(T_{n} x\right)\right\| \leq\|f\|\left\|T_{n} x\right\| \leq\|f\| M_{x}<\infty
$$

(c) \Longrightarrow (a) Let $Q: Y \rightarrow Y^{* *}$ denote the natural embedding. Fix any $x \in X$. Since Y^{*} is a Banach space and for every $f \in Y^{*}$, by (c) we have

$$
\left\|Q\left(T_{n} x\right)(f)\right\|=\left\|f\left(T_{n} x\right)\right\|<\infty
$$

it follows from Uniform Boundedness Theorem that there exists $M_{x}>0$ (independent of f) such that for all $n \in \mathbb{N}$,

$$
\left\|T_{n} x\right\|=\left\|Q\left(T_{n} x\right)\right\| \leq M_{x}<\infty
$$

Since X is a Banach space and the above inequality holds from all $x \in X$, by Uniform Boundedness Theorem there exists $M>0$ such that $\left\|T_{n}\right\| \leq M$ for all $n \in \mathbb{N}$.
2. Show that the space

$$
Y=\left\{X \in C^{1}[0,1]: x(0)=0\right\}
$$

equipped with the sup-norm is not a Banach space (cf. the following lemma).
Lemma 1. The sequence

$$
x_{n}(t)=\sqrt{\left(t-\frac{1}{2}\right)^{2}+\frac{1}{n}}, \quad t \in[0,1]
$$

converges uniformly to the function $x(t)=|t-1 / 2|$ on $[0,1]$.

Proof. For $n \in \mathbb{N}$, define $y_{n}=x_{n}-\sqrt{\frac{1}{4}+\frac{1}{n}}$. Then $y_{n}(0)=0$ and

$$
y_{n}^{\prime}=\frac{t-1 / 2}{\sqrt{(t-1 / 2)^{2}+1 / n}} \in C[0,1]
$$

thus $y_{n} \in C^{1}[0,1]$ for all $n \in \mathbb{N}$.
It follows from Lemma 1 that $x_{n} \rightarrow x$ in sup-norm. Since $\sqrt{\frac{1}{4}+\frac{1}{n}} \rightarrow \frac{1}{2}$ in sup-norm as $n \rightarrow \infty$, we have $y_{n}=x_{n}-\sqrt{\frac{1}{4}+\frac{1}{n}} \rightarrow x-\frac{1}{2}$ as $n \rightarrow \infty$ in sup-norm. Hence $\left(y_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence in $C^{1}[0,1]$ with respect to sup-norm.
Suppose on the contrary that ($C^{1}[0,1]$, sup-norm) is a Banach space. Then there exists $y^{*} \in$ $C^{1}[0,1]$ such that $\lim _{n \rightarrow \infty} y_{n}=y^{*}$ in sup-norm. Then

$$
y^{*}(t)=\lim _{n \rightarrow \infty} y_{n}(t)=x(t)-\frac{1}{2} \quad, \forall t \in[0,1] .
$$

Hence $y^{*}=x-\frac{1}{2}$ but not differentiable at $t=\frac{1}{2}$, thus $y^{*} \notin C^{1}[0,1]$ which is a contradiction.

