THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2021-22 Term 1 Solution to Homework 4

- 1. If X and Y are Banach spaces and $T_n: X \to Y$, n = 1, 2, ... a sequence of bounded linear operators, show that the following statements are equivalent:
 - (a) the sequence $(||T_n||)$ is bounded,
 - (b) the sequence $(||T_n x||)$ is bounded for every $x \in X$,
 - (c) the sequence $(|f(T_n x)|)$ is bounded for every $x \in X$ and every $f \in Y^*$.

Proof. We prove in the order (a) \implies (b) \implies (c) \implies (a).

(a) \Longrightarrow (b) There exists M > 0 such that $\sup_n ||T_n|| \le M$. Fix any $x \in X$. Then for all $n \in \mathbb{N}$,

$$||T_n x|| \le ||T_n|| ||x|| \le M ||x|| < \infty.$$

(b) \implies (c) Fix any $x \in X$, there exists $M_x > 0$ such that $\sup_n ||T_n x|| \le M_x$. Fix any $f \in Y^*$. Then for all $n \in \mathbb{N}$,

 $||f(T_n x)|| \le ||f|| ||T_n x|| \le ||f|| M_x < \infty.$

 $(c) \Longrightarrow (a)$ Let $Q: Y \to Y^{**}$ denote the natural embedding. Fix any $x \in X$. Since Y^* is a Banach space and for every $f \in Y^*$, by (c) we have

$$||Q(T_nx)(f)|| = ||f(T_nx)|| < \infty,$$

it follows from Uniform Boundedness Theorem that there exists $M_x > 0$ (independent of f) such that for all $n \in \mathbb{N}$,

$$||T_n x|| = ||Q(T_n x)|| \le M_x < \infty.$$

Since X is a Banach space and the above inequality holds from all $x \in X$, by Uniform Boundedness Theorem there exists M > 0 such that $||T_n|| \leq M$ for all $n \in \mathbb{N}$.

2. Show that the space

$$Y = \{ X \in C^1[0,1] \colon x(0) = 0 \}$$

equipped with the sup-norm is not a Banach space (cf. the following lemma).

Lemma 1. The sequence

$$x_n(t) = \sqrt{(t - \frac{1}{2})^2 + \frac{1}{n}}, \qquad t \in [0, 1]$$

converges uniformly to the function x(t) = |t - 1/2| on [0, 1].

Proof. For $n \in \mathbb{N}$, define $y_n = x_n - \sqrt{\frac{1}{4} + \frac{1}{n}}$. Then $y_n(0) = 0$ and

$$y'_n = \frac{t - 1/2}{\sqrt{(t - 1/2)^2 + 1/n}} \in C[0, 1],$$

thus $y_n \in C^1[0,1]$ for all $n \in \mathbb{N}$.

It follows from Lemma 1 that $x_n \to x$ in sup-norm. Since $\sqrt{\frac{1}{4} + \frac{1}{n}} \to \frac{1}{2}$ in sup-norm as $n \to \infty$, we have $y_n = x_n - \sqrt{\frac{1}{4} + \frac{1}{n}} \to x - \frac{1}{2}$ as $n \to \infty$ in sup-norm. Hence $(y_n)_{n=1}^{\infty}$ is a Cauchy sequence in $C^1[0, 1]$ with respect to sup-norm.

Suppose on the contrary that $(C^1[0, 1], \text{sup-norm})$ is a Banach space. Then there exists $y^* \in C^1[0, 1]$ such that $\lim_{n\to\infty} y_n = y^*$ in sup-norm. Then

$$y^*(t) = \lim_{n \to \infty} y_n(t) = x(t) - \frac{1}{2} \quad , \forall t \in [0, 1].$$

Hence $y^* = x - \frac{1}{2}$ but not differentiable at $t = \frac{1}{2}$, thus $y^* \notin C^1[0, 1]$ which is a contradiction. \Box

— THE END —