MATH3060 HW8 Due date: No need to hand-in

- 1. Use Baire Category Thomm to show that <u>transcendental</u> numbers are dense in IR. (Recall that a number is called <u>algebraic</u> if it is a root of some polynomial with integer coefficients, and a number is called <u>transcendental</u> of it is not algebraic.)
- 2. Show that any norm on \mathbb{R}^n is equivalent to the usual Euclidean norm $\|\cdot\|_2$ defined by $\|X\|_2 = \int_{\overline{z}=1}^{\infty} \chi_i^2 fa = \chi_i(\chi_i, \cdot; \chi_n) \in \mathbb{R}^n$.
- 3. Let X be a metric space, $G_n, n=1,2,...$, are open subsets. Suppose that $G = \bigcap_{n=1}^{\infty} G_n$ is dense in X. Show that $G = \bigcap_{n=1}^{\infty} G_n$ is dense in X.
- 4. Let & be the set of convergent sequences with dos metric, and $\mathcal{C}_{Q} = \{ X = \{ Xn \} \in \mathcal{C} = \lim_{n \neq \infty} Xn \in Q \}$. Is \mathcal{C}_{Q} nowhere dense in \mathcal{E}_{+}^{2} Is \mathcal{C}_{Q} of $|^{st}$ category in \mathcal{E}_{+}^{2} ?

(End)