Unless otherwise specified, if we write (a, b) or [a, b], it is always the case that $a < b \in \mathbb{R}$.

1 Norms on Vector Spaces

Definition 1.1. Let X be a vector space. We say a function $\|\cdot\| : X \to \mathbb{R}$ is a norm if

i. $ x \ge 0$ for all $x \in X$	(non-negativity)
ii. $\ \alpha x\ = \alpha \ x\ $ for all $x \in X$	(scalar homogeneity)
iii. $ x + y \le x + y $	(triangle inequality)
iv. $ x = 0$ if and only if $x = 0$	(separating points)

If there is a norm $\|\cdot\|$ on X, we call the pair $(X, \|\cdot\|)$ a normed space.

Quick Practice

- 1. Show that the absolute value function $|\cdot| : \mathbb{R} \to \mathbb{R}$ is a norm on the vector space of \mathbb{R} . Solution. Covered in Tutorial.
- 2. Let $\mathcal{C}([0,1])$ denote the space of continuous functions on [0,1].
 - a. Show that $\mathcal{C}([0,1])$ is a vector space.

b. Define for all $f \in \mathcal{C}([0,1])$ that $||f||_{\infty} := \sup_{t \in [0,1]} |f(t)|$. Show that $||\cdot||_{\infty}$ is a norm of $\mathcal{C}([0,1])$. Solution. Covered in Tutorial.

- 3. Let ℓ_{∞} denote the space of bounded real-valued sequence, that is, $x \in \ell_{\infty}$ if and only if $x = (x_n)$ where (x_n) is a bounded sequence and $x_n \in \mathbb{R}$.
 - a. Show that ℓ_{∞} is a vector space (with the obvious operations).
 - b. Define for all $x = (x_n) \in \ell_{\infty}$ that $||x||_{\infty} := \sup_n |x_n|$. Show that $||\cdot||_{\infty}$ is a norm on ℓ_{∞} .
 - c. Denote c_0 the space of sequences that converge to 0, that is, $x := (x_n) \in c_0$ if and only if $\lim x_n = 0$. Show that $c_0 \subset \ell_{\infty}$ and it is a vector subspace of ℓ_{∞} .
 - d. Show that $\|\cdot\|_{\infty}$ is a norm on c_0 .

Solution. Covered in Tutorial. All are not hard, except maybe for the notations.

- 4. Let Lip([0,1]) denote the space of Lipschitz functions on [0,1]. Define $||f||_L := \sup_{x \neq y} \frac{|f(x) f(y)|}{|x-y|}$.
 - a. Show that $\operatorname{Lip}_0([0,1])$ is a vector space and $\|\cdot\|_L$ satisfies (i) (iii) in the definition of a norm.
 - b. Show that $\|\cdot\|_L$ is NOT a norm.
 - c. Define $\text{Lip}_0([0,1]) := \{f \in \text{Lip}([0,1]) : f(0) = 0\}$. Show that $\text{Lip}_0([0,1])$ is a vector subspace of Lip([0,1]) and that $\|\cdot\|_L$ is a norm on $\text{Lip}_0([0,1])$.

Solution. Covered in Tutorial.

5. Consider the space of Riemann integrable functions $\mathcal{R}([0,1])$. Define $||f||_1 := \int_0^1 |f|$ for all $f \in \mathcal{R}([0,1])$.

a. Show that $(\mathcal{C}([0,1]), \|\cdot\|_1)$ is a normed space.

b. Is $\|\cdot\|_1$ a norm on $\mathcal{R}([0,1])$?

Solution. (a). The trickiest part is how $||f||_1 = 0$ would imply f = 0 for continuous f. This follows from HW5 Q2. (b). No. It is not a norm as $||f||_1 = 0$ would not imply f = 0 for general integrable functions.

More Quick Practice

- 1. Let X be a normed space. We say that a subset $C \subset X$ is convex if for all $x, y \in C$ we have $tx + (1-t)y \in C$ for all $t \in [0,1]$. Define $B(x,r) := \{y \in X : ||y x|| < r\}$ for all $x \in X$ and r > 0.
 - a. Show that B(0,1) is convex.
 - b. Show that B(x,r) is convex for all $x \in X$ and r > 0

Solution. (a), (b): Let $a, b \in B(x, r)$ and $t \in [0, 1]$. Then ta + (1 - t)b - x = t(a - x) + (1 - t)(b - x). Hence, we have

$$||t(a-x) + (1-t)(b-x)|| \le t ||a-x|| + (1-t)||b-x||$$

- 2. Let $p \ge 1$. Define for all $f \in \mathcal{C}([0,1])$ that $\|f\|_p := (\int_0^1 |f|^p)^{1/p}$.
 - a. Show that $\|\cdot\|_p$ satisfies (i), (ii), (iv) in the definition of a norm for all $p \ge 1$.
 - b. When p = 1, 2, show that $\|\cdot\|_p$ is a norm.
 - c. (Challenging, cf Tutorial 3). Show that $\|\cdot\|_p$ is a norm for all $p \ge 1$.

Solution. (a). Easy. (b). p = 1 follows from the triangle inequality. p = 2 follows from the Cauchy-Schwarz inequality (cf. HW6 Q3) with techniques from Tutorial 3). (c). Not much different from the solutions in Tutorial 3, P.2 Q3-5.

3. Let X be a normed space. Let (x_n) be a sequence in X. We say that

- (x_n) is a Cauchy sequence in X if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $||x_n x_m|| < \epsilon$.
- (x_n) converges to $x \in X$ if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $||x_n x|| < \epsilon$. In other words, $\lim_n ||x_n x|| = 0$.

Now consider $X = (\mathcal{C}([0,1]), \|\cdot\|_{\infty})$. Let (f_n) be a Cauchy sequence in X.

- a. Show that for all $t \in [0, 1]$, the sequence $(f_n(t))$ is a Cauchy sequence in \mathbb{R} .
- b. Following (a), define $f(t) := \lim_{n \to \infty} f_n(t)$ for all $t \in [0, 1]$. Show that (f_n) converges to f.
- c. (Tricky). Consider now instead $Y := (\mathcal{C}([0,1]), \|\cdot\|_1)$, where $\|f\|_1 := \int_0^1 |f|$. Show that not every Cauchy sequence in Y converges.

(*Hint: Find a sequence* (f_n) in $\mathcal{C}([0,1])$ and $f \in \mathcal{R}([0,1]) \setminus \mathcal{C}([0,1])$ such that $\lim ||f_n - f||_1 = 0$.

Solution. (a), (b) are easy facts about uniform convergence. (c). Consider $f:[0,1] \to \mathbb{R}$ with f(x) = 1 for all $x \in [0, \frac{1}{2})$ and f(x) = 0 for $x \in [\frac{1}{2}, 1]$. Let (r_n) be a sequence of positive numbers < 1/2 such that $r_n \to 0$. Define for all $n \in \mathbb{N}$ that $f_n(x) = f(x)$ except for $x \in (\frac{1}{2} - r_n, \frac{1}{2})$ while f_n is the line connecting $(\frac{1}{2} - r_n, 1)$ and $(\frac{1}{2}, 0)$, that is, $f_n(x) = \frac{-1}{r_n}(x - \frac{1}{2})$ for $x \in (\frac{1}{2} - r_n, \frac{1}{2})$. It is clear that (f_n) is a sequence of continuous functions. It is not hard to see that we have for all $n \in \mathbb{R}$ that

$$\int_0^1 |f_n - f| = \int_{1/2 - r_n}^{1/2} |f_n - f| = \int_{1/2 - r_n}^{1/2} \frac{-1}{r_n} (x - \frac{1}{2}) dx = \frac{-1}{r_n} [\frac{1}{2}x^2 - \frac{1}{2}x]_{1/2 - r_n}^{1/2} = r_n$$

Hence, we have $||f_n - f||_1 \to 0$ as $n \to \infty$ by Squeeze Theorem.

Note that the fact that $||f_n - f||_1 \to 0$ would imply (f_n) to be a Cauchy sequence in $|| \cdot ||_1$. Nonetheless it does not converge to a continuous function. Suppose not. Then g is a continuous function with $||f_n - g||_1 \to 0$. This would imply $\int_0^1 |f - g| = 0$ and so $\int_0^{1/2} |f - g| = 0$ and $\int_{1/2}^1 |f - g| = 0$. Hence g = 1 on [0, 1/2] while g = 0 on [1/2, 1], which cannot be continuous on [0, 1].

- 4. Let X be a normed space. We say that $f: X \to \mathbb{R}$ is continuous at $x \in X$ if for all $\epsilon > 0$, there exists $\delta > 0$ such that $||x y|| < \delta$ would imply $|f(x) f(y)| < \epsilon$.
 - a. Show that a linear functional $f: X \to \mathbb{R}$ is continuous for all $x \in X$ if and only if f is continuous at $0 \in X$.
 - b. Suppose $X = (\mathbb{R}, |\cdot|)$. Show that every linear functional is continuous.

Solution. (a). Note that f(x - y) = f(x) - f(y) for all $x, y \in X$ by linearity. The result follows clearly. (b). Note that $f(x) = f(x \cdot 1) = f(1)x$ for all $x \in \mathbb{R}$ and linear functional f. It is clearly that f is continuous.

- 5. This question follows Q4. Let X be a normed space. Then we denote X^* the space of *continuous* linear functionals, that is, $f \in X^*$ if and only if f is continuous and linear.
 - a. Show that a linear functional $f \in X^*$ if and only if there exists M > 0 such that $|f(x)| \leq M ||x||$
 - b. Define for all $f \in X^*$ that $||f||_{X^*} := \sup_{||x|| \le 1} |f(x)|$. Show that $(X^*, \|\cdot\|_{X^*})$ is a normed space.
 - c. (Challenging). Show that $(X^*, \|\cdot\|_{X^*})$ satisfies the Cauchy criteria, that is, every Cauchy sequence in X^* converges to some element in X^* .

Solution. (a). (\Leftarrow). This implies that f is continuous at 0 and so f is continuous by Q4. (\Rightarrow). Note that by continuity at 0 there exists $\delta > 0$ such that $|f(x)| \leq 1$ if $||x|| < \delta$. Now pick $x \in X$. We consider $x_0 := \frac{\delta}{2} \frac{x}{||x||}$. Then $||x_0|| < \delta$. It follows that $|f(x_0)| \leq 1$. This implies that $|f(x)| \leq \frac{2}{\delta} ||x||$ by linearly for all $x \in X$.

(b). is not hard and standard. (c). The argument is the very similar to why uniformly Cauchy sequence of continuous functions (from $A \subset \mathbb{R}$ to \mathbb{R}) has a continuous limit. Construct first a point-wise limit of (f_n) using the Cauchy criteria on real numbers. Then show that the point-wise limit is a uniform limit by triangle inequalities.

- 6. Let X, Y be a normed space. We say that $T: X \to Y$ is an isometry if $||Tx||_Y = ||x||_X$ for all $x \in X$.
 - a. Show that every isometry is injective.
 - b. For $f \in \mathcal{C}^1([0,1])$, define $||f||_L := \sup_{x \neq y} \frac{|f(x) f(y)|}{|x-y|}$ and $||f||_S := ||f'||_{\infty} = \sup_{t \in [0,1]} |f'(t)|$. Show that $||\cdot||_L$ and $||\cdot||_S$ satisfies (i) to (iii) in the definition of a norm but is not a norm on $\mathcal{C}^1([0,1])$
 - c. Consider the subspace $Z := \mathcal{C}_0^1([0,1]) := \{f \in \mathcal{C}(0,1) : f(0) = 0\}$. Show that $(Z, \|\cdot\|_L)$ and $(Z, \|\cdot\|_S)$ are normed spaces.
 - d. Consider $X := (Z, \|\cdot\|_L)$ and $Y := (Z, \|\cdot\|_S)$. Show that there exists a *surjective linear* isometry, or a linear isometric isomorphism, between X and Y.

Solution. (a) to (c) are standard and not hard; the proofs are omitted. (d). Just consider the identity map of Z, which becomes a linear map between X, Y.

7. (Functional Interpretation of FTC, cf. Tutorial 7). Let $X := (\mathcal{C}([0,1]), \|\cdot\|_{\infty})$ and $Y := (\mathcal{C}_0^1([0,1]), \|\cdot\|_L)$, which is defined in Q6. Define $T : X \to Y$ by $Tf(t) := \int_0^t f$ for all $t \in [0,1]$. Show that T is a linear isometric isomorphism between X, Y by finding explicitly the inverse of T.

Solution. Covered in Tutorial 7. Here is a restatement only.