Unless otherwise specified, if we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 Norms on Vector Spaces

Definition 1.1. Let X be a vector space. We say a function $\|\cdot\|: X \rightarrow \mathbb{R}$ is a norm if
i. $\|x\| \geq 0$ for all $x \in X$ (non-negativity)
ii. $\|\alpha x\|=|\alpha|\|x\|$ for all $x \in X$ (scalar homogeneity)
iii. $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)
iv. $\|x\|=0$ if and only if $x=0$
(separating points)
If there is a norm $\|\cdot\|$ on X, we call the pair $(X,\|\cdot\|)$ a normed space.

Quick Practice

1. Show that the absolute value function $|\cdot|: \mathbb{R} \rightarrow \mathbb{R}$ is a norm on the vector space of \mathbb{R}.

Solution. Covered in Tutorial.
2. Let $\mathcal{C}([0,1])$ denote the space of continuous functions on $[0,1]$.
a. Show that $\mathcal{C}([0,1])$ is a vector space.
b. Define for all $f \in \mathcal{C}([0,1])$ that $\|f\|_{\infty}:=\sup _{t \in[0,1]}|f(t)|$. Show that $\|\cdot\|_{\infty}$ is a norm of $\mathcal{C}([0,1])$.

Solution. Covered in Tutorial.
3. Let ℓ_{∞} denote the space of bounded real-valued sequence, that is, $x \in \ell_{\infty}$ if and only if $x=\left(x_{n}\right)$ where $\left(x_{n}\right)$ is a bounded sequence and $x_{n} \in \mathbb{R}$.
a. Show that ℓ_{∞} is a vector space (with the obvious operations).
b. Define for all $x=\left(x_{n}\right) \in \ell_{\infty}$ that $\|x\|_{\infty}:=\sup _{n}\left|x_{n}\right|$. Show that $\|\cdot\|_{\infty}$ is a norm on ℓ_{∞}.
c. Denote c_{0} the space of sequences that converge to 0 , that is, $x:=\left(x_{n}\right) \in c_{0}$ if and only if $\lim x_{n}=0$. Show that $c_{0} \subset \ell_{\infty}$ and it is a vector subspace of ℓ_{∞}.
d. Show that $\|\cdot\|_{\infty}$ is a norm on c_{0}.

Solution. Covered in Tutorial. All are not hard, except maybe for the notations.
4. Let $\operatorname{Lip}([0,1])$ denote the space of Lipschitz functions on $[0,1]$. Define $\|f\|_{L}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|}$.
a. Show that $\operatorname{Lip}_{0}([0,1])$ is a vector space and $\|\cdot\|_{L}$ satisfies $(i)-(i i i)$ in the definition of a norm.
b. Show that $\|\cdot\|_{L}$ is NOT a norm.
c. Define $\operatorname{Lip}_{0}([0,1]):=\{f \in \operatorname{Lip}([0,1]): f(0)=0\}$. Show that $\operatorname{Lip}_{0}([0,1])$ is a vector subspace of $\operatorname{Lip}([0,1])$ and that $\|\cdot\|_{L}$ is a norm on $\operatorname{Lip}_{0}([0,1])$.
Solution. Covered in Tutorial.
5. Consider the space of Riemann integrable functions $\mathcal{R}([0,1])$. Define $\|f\|_{1}:=\int_{0}^{1}|f|$ for all $f \in \mathcal{R}([0,1])$.
a. Show that $\left(\mathcal{C}([0,1]),\|\cdot\|_{1}\right)$ is a normed space.
b. Is $\|\cdot\|_{1}$ a norm on $\mathcal{R}([0,1])$?

Solution. (a). The trickiest part is how $\|f\|_{1}=0$ would imply $f=0$ for continuous f. This follows from HW5 Q2. (b). No. It is not a norm as $\|f\|_{1}=0$ would not imply $f=0$ for general integrable functions.

More Quick Practice

1. Let X be a normed space. We say that a subset $C \subset X$ is convex if for all $x, y \in C$ we have $t x+(1-t) y \in C$ for all $t \in[0,1]$. Define $B(x, r):=\{y \in X:\|y-x\|<r\}$ for all $x \in X$ and $r>0$.
a. Show that $B(0,1)$ is convex.
b. Show that $B(x, r)$ is convex for all $x \in X$ and $r>0$

Solution. (a), (b): Let $a, b \in B(x, r)$ and $t \in[0,1]$. Then $t a+(1-t) b-x=t(a-x)+(1-t)(b-x)$. Hence, we have

$$
\|t(a-x)+(1-t)(b-x)\| \leq t\|a-x\|+(1-t)\|b-x\|<t r+(1-t) r=r
$$

2. Let $p \geq 1$. Define for all $f \in \mathcal{C}([0,1])$ that $\|f\|_{p}:=\left(\int_{0}^{1}|f|^{p}\right)^{1 / p}$.
a. Show that $\|\cdot\|_{p}$ satisfies (i), (ii), (iv) in the definition of a norm for all $p \geq 1$.
b. When $p=1,2$, show that $\|\cdot\|_{p}$ is a norm.
c. (Challenging, cf Tutorial 3). Show that $\|\cdot\|_{p}$ is a norm for all $p \geq 1$.

Solution. (a). Easy. (b). $p=1$ follows from the triangle inequality. $p=2$ follows from the CauchySchwarz inequality (cf. HW6 Q3) with techniques from Tutorial 3). (c). Not much different from the solutions in Tutorial 3, P. 2 Q3-5.
3. Let X be a normed space. Let $\left(x_{n}\right)$ be a sequence in X. We say that

- $\left(x_{n}\right)$ is a Cauchy sequence in X if for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left\|x_{n}-x_{m}\right\|<\epsilon$.
- $\left(x_{n}\right)$ converges to $x \in X$ if for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left\|x_{n}-x\right\|<\epsilon$. In other words, $\lim _{n}\left\|x_{n}-x\right\|=0$.

Now consider $X=\left(\mathcal{C}([0,1]),\|\cdot\|_{\infty}\right)$. Let $\left(f_{n}\right)$ be a Cauchy sequence in X.
a. Show that for all $t \in[0,1]$, the sequence $\left(f_{n}(t)\right)$ is a Cauchy sequence in \mathbb{R}.
b. Following (a), define $f(t):=\lim _{n} f_{n}(t)$ for all $t \in[0,1]$. Show that $\left(f_{n}\right)$ converges to f.
c. (Tricky). Consider now instead $Y:=\left(\mathcal{C}([0,1]),\|\cdot\|_{1}\right)$, where $\|f\|_{1}:=\int_{0}^{1}|f|$. Show that not every Cauchy sequence in Y converges.
(Hint: Find a sequence $\left(f_{n}\right)$ in $\mathcal{C}([0,1])$ and $f \in \mathcal{R}([0,1]) \backslash \mathcal{C}([0,1])$ such that $\lim \left\|f_{n}-f\right\|_{1}=0$.
Solution. (a), (b) are easy facts about uniform convergence. (c). Consider $f:[0,1] \rightarrow \mathbb{R}$ with $f(x)=1$ for all $x \in\left[0, \frac{1}{2}\right)$ and $f(x)=0$ for $x \in\left[\frac{1}{2}, 1\right]$. Let $\left(r_{n}\right)$ be a sequence of positive numbers $<1 / 2$ such that $r_{n} \rightarrow 0$. Define for all $n \in \mathbb{N}$ that $f_{n}(x)=f(x)$ except for $x \in\left(\frac{1}{2}-r_{n}, \frac{1}{2}\right)$ while f_{n} is the line connecting $\left(\frac{1}{2}-r_{n}, 1\right)$ and $\left(\frac{1}{2}, 0\right)$, that is, $f_{n}(x)=\frac{-1}{r_{n}}\left(x-\frac{1}{2}\right)$ for $x \in\left(\frac{1}{2}-r_{n}, \frac{1}{2}\right)$. It is clear that $\left(f_{n}\right)$ is a sequence of continuous functions. It is not hard to see that we have for all $n \in \mathbb{R}$ that

$$
\int_{0}^{1}\left|f_{n}-f\right|=\int_{1 / 2-r_{n}}^{1 / 2}\left|f_{n}-f\right|=\int_{1 / 2-r_{n}}^{1 / 2} \frac{-1}{r_{n}}\left(x-\frac{1}{2}\right) d x=\frac{-1}{r_{n}}\left[\frac{1}{2} x^{2}-\frac{1}{2} x\right]_{1 / 2-r_{n}}^{1 / 2}=r_{n}
$$

Hence, we have $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$ by Squeeze Theorem.
Note that the fact that $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ would imply $\left(f_{n}\right)$ to be a Cauchy sequence in $\|\cdot\|_{1}$. Nonetheless it does not converge to a continuous function. Suppose not. Then g is a continuous function with $\left\|f_{n}-g\right\|_{1} \rightarrow 0$. This would imply $\int_{0}^{1}|f-g|=0$ and so $\int_{0}^{1 / 2}|f-g|=0$ and $\int_{1 / 2}^{1}|f-g|=0$. Hence $g=1$ on $[0,1 / 2]$ while $g=0$ on $[1 / 2,1]$, which cannot be continuosu on $[0,1]$.
4. Let X be a normed space. We say that $f: X \rightarrow \mathbb{R}$ is continuous at $x \in X$ if for all $\epsilon>0$, there exists $\delta>0$ such that $\|x-y\|<\delta$ would imply $|f(x)-f(y)|<\epsilon$.
a. Show that a linear functional $f: X \rightarrow \mathbb{R}$ is continuous for all $x \in X$ if and only if f is continuous at $0 \in X$.
b. Suppose $X=(\mathbb{R},|\cdot|)$. Show that every linear functional is continuous.

Solution. (a). Note that $f(x-y)=f(x)-f(y)$ for all $x, y \in X$ by linearity. The result follows clearly. (b). Note that $f(x)=f(x \cdot 1)=f(1) x$ for all $x \in \mathbb{R}$ and linear functional f. It is clearly that f is continuous.
5. This question follows Q4. Let X be a normed space. Then we denote X^{*} the space of continuous linear functionals, that is, $f \in X^{*}$ if and only if f is continuous and linear.
a. Show that a linear functional $f \in X^{*}$ if and only if there exists $M>0$ such that $|f(x)| \leq M\|x\|$
b. Define for all $f \in X^{*}$ that $\|f\|_{X^{*}}:=\sup _{\|x\| \leq 1}|f(x)|$. Show that $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ is a normed space.
c. (Challenging). Show that $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ satisfies the Cauchy criteria, that is, every Cauchy sequence in X^{*} converges to some element in X^{*}.

Solution. (a). (\Leftarrow). This implies that f is continuous at 0 and so f is continuous by Q4. (\Rightarrow). Note that by continuity at 0 there exists $\delta>0$ such that $|f(x)| \leq 1$ if $\|x\|<\delta$. Now pick $x \in X$. We consider $x_{0}:=\frac{\delta}{2} \frac{x}{\|x\|}$. Then $\left\|x_{0}\right\|<\delta$. It follows that $\left|f\left(x_{0}\right)\right| \leq 1$. This implies that $|f(x)| \leq \frac{2}{\delta}\|x\|$ by linearly for all $x \in X$.
(b). is not hard and standard. (c). The argument is the very similar to why uniformly Cauchy sequence of continuous functions (from $A \subset \mathbb{R}$ to \mathbb{R}) has a continuous limit. Construct first a point-wise limit of $\left(f_{n}\right)$ using the Cauchy criteria on real numbers. Then show that the point-wise limit is a uniform limit by triangle inequalities.
6. Let X, Y be a normed space. We say that $T: X \rightarrow Y$ is an isometry if $\|T x\|_{Y}=\|x\|_{X}$ for all $x \in X$.
a. Show that every isometry is injective.
b. For $f \in \mathcal{C}^{1}([0,1])$, define $\|f\|_{L}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|}$ and $\|f\|_{S}:=\left\|f^{\prime}\right\|_{\infty}=\sup _{t \in[0,1]}\left|f^{\prime}(t)\right|$. Show that $\|\cdot\|_{L}$ and $\|\cdot\|_{S}$ satisfies (i) to (iii) in the definition of a norm but is not a norm on $\mathcal{C}^{1}([0,1])$
c. Consider the subspace $Z:=\mathcal{C}_{0}^{1}([0,1]):=\{f \in \mathcal{C}(0,1): f(0)=0\}$. Show that $\left(Z,\|\cdot\|_{L}\right)$ and $\left(Z,\|\cdot\|_{S}\right)$ are normed spaces.
d. Consider $X:=\left(Z,\|\cdot\|_{L}\right)$ and $Y:=\left(Z,\|\cdot\|_{S}\right)$. Show that there exists a surjective linear isometry, or a linear isometric isomorphism, between X and Y.

Solution. (a) to (c) are standard and not hard; the proofs are omitted. (d). Just consider the identity map of Z, which becomes a linear map between X, Y.
7. (Functional Interpretation of FTC, cf. Tutorial 7). Let $X:=\left(\mathcal{C}([0,1]),\|\cdot\|_{\infty}\right)$ and $Y:=\left(\mathcal{C}_{0}^{1}([0,1]),\|\cdot\|_{L}\right)$, which is defined in Q6. Define $T: X \rightarrow Y$ by $T f(t):=\int_{0}^{t} f$ for all $t \in[0,1]$. Show that T is a linear isometric isomorphism between X, Y by finding explicitly the inverse of T.
Solution. Covered in Tutorial 7. Here is a restatement only.

