Unless otherwise specified, if we write (a, b) or [a, b], it is always the case that $a < b \in \mathbb{R}$.

1 Norms on Vector Spaces

Definition 1.1. Let X be a vector space. We say a function $\|\cdot\|: X \to \mathbb{R}$ is a norm if

- i. $||x|| \ge 0$ for all $x \in X$ (non-negativity)
- ii. $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in X$ (scalar homogeneity)
- iii. $||x+y|| \le ||x|| + ||y||$ (triangle inequality)
- iv. ||x|| = 0 if and only if x = 0 (separating points)

If there is a norm $\|\cdot\|$ on X, we call the pair $(X, \|\cdot\|)$ a normed space.

Quick Practice

- 1. Show that the absolute value function $|\cdot|:\mathbb{R}\to\mathbb{R}$ is a norm on the vector space of \mathbb{R} .
- 2. Let $\mathcal{C}([0,1])$ denote the space of continuous functions on [0,1].
 - a. Show that $\mathcal{C}([0,1])$ is a vector space.
 - b. Define for all $f \in \mathcal{C}([0,1])$ that $||f||_{\infty} := \sup_{t \in [0,1]} |f(t)|$. Show that $||\cdot||_{\infty}$ is a norm of $\mathcal{C}([0,1])$.
- 3. Let ℓ_{∞} denote the space of bounded real-valued sequence, that is, $x \in \ell_{\infty}$ if and only if $x = (x_n)$ where (x_n) is a bounded sequence and $x_n \in \mathbb{R}$.
 - a. Show that ℓ_{∞} is a vector space (with the obvious operations).
 - b. Define for all $x = (x_n) \in \ell_\infty$ that $||x||_\infty := \sup_n |x_n|$. Show that $||\cdot||_\infty$ is a norm on ℓ_∞ .
 - c. Denote c_0 the space of sequences that converge to 0, that is, $x := (x_n) \in c_0$ if and only if $\lim x_n = 0$. Show that $c_0 \subset \ell_\infty$ and it is a vector subspace of ℓ_∞ .
 - d. Show that $\|\cdot\|_{\infty}$ is a norm on c_0 .
- 4. Let $\operatorname{Lip}([0,1])$ denote the space of Lipschitz functions on [0,1]. Define $||f||_L := \sup_{x \neq y} \frac{|f(x) f(y)|}{|x y|}$.
 - a. Show that $\text{Lip}_0([0,1])$ is a vector space and $\|\cdot\|_L$ satisfies (i)-(iii) in the definition of a norm.
 - b. Show that $\|\cdot\|_L$ is NOT a norm.
 - c. Define $\text{Lip}_0([0,1]) := \{ f \in \text{Lip}([0,1]) : f(0) = 0 \}$. Show that $\text{Lip}_0([0,1])$ is a vector subspace of Lip([0,1]) and that $\|\cdot\|_L$ is a norm on $\text{Lip}_0([0,1])$.
- 5. Consider the space of Riemann integrable functions $\mathcal{R}([0,1])$. Define $||f||_1 := \int_0^1 |f|$ for all $f \in \mathcal{R}([0,1])$.
 - a. Show that $(\mathcal{C}([0,1]), \|\cdot\|_1)$ is a normed space.
 - b. Is $\|\cdot\|_1$ a norm on $\mathcal{R}([0,1])$?

More Quick Practice

- 1. Let X be a normed space. We say that a subset $C \subset X$ is convex if for all $x, y \in C$ we have $tx + (1-t)y \in C$ for all $t \in [0, 1]$. Define $B(x, r) := \{y \in X : ||y x|| < r\}$ for all $x \in X$ and x > 0.
 - a. Show that B(0,1) is convex.
 - b. Show that B(x,r) is convex for all $x \in X$ and r > 0

- 2. Let $p \ge 1$. Define for all $f \in \mathcal{C}([0,1])$ that $||f||_p := (\int_0^1 |f|^p)^{1/p}$.
 - a. Show that $\|\cdot\|_p$ satisfies (i), (ii), (iv) in the definition of a norm for all $p \geq 1$.
 - b. When p = 1, 2, show that $\|\cdot\|_p$ is a norm.
 - c. (Challenging, cf Tutorial 3). Show that $\|\cdot\|_p$ is a norm for all $p \geq 1$.

- 3. Let X be a normed space. Let (x_n) be a sequence in X. We say that
 - (x_n) is a Cauchy sequence in X if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $||x_n x_m|| < \epsilon$.
 - (x_n) converges to $x \in X$ if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $||x_n x|| < \epsilon$. In other words, $\lim_n ||x_n x|| = 0$.

Now consider $X = (\mathcal{C}([0,1]), \|\cdot\|_{\infty})$. Let (f_n) be a Cauchy sequence in X.

- a. Show that for all $t \in [0,1]$, the sequence $(f_n(t))$ is a Cauchy sequence in \mathbb{R} .
- b. Following (a), define $f(t) := \lim_n f_n(t)$ for all $t \in [0,1]$. Show that (f_n) converges to f.
- c. (Tricky). Consider now instead $Y := (\mathcal{C}([0,1]), \|\cdot\|_1)$, where $\|f\|_1 := \int_0^1 |f|$. Show that not every Cauchy sequence in Y converges.

(Hint: Find a sequence (f_n) in $\mathcal{C}([0,1])$ and $f \in \mathcal{R}([0,1]) \setminus \mathcal{C}([0,1])$ such that $\lim ||f_n - f||_1 = 0$.

- 4. Let X be a normed space. We say that $f: X \to \mathbb{R}$ is continuous at $x \in X$ if for all $\epsilon > 0$, there exists $\delta > 0$ such that $||x y|| < \delta$ would imply $|f(x) f(y)| < \epsilon$.
 - a. Show that a linear functional $f: X \to \mathbb{R}$ is continuous for all $x \in X$ if and only if f is continuous at $0 \in X$.
 - b. Suppose $X = (\mathbb{R}, |\cdot|)$. Show that every linear functional is continuous.

- 5. This question follows Q4. Let X be a normed space. Then we denote X^* the space of *continuous* linear functionals, that is, $f \in X^*$ if and only if f is continuous and linear.
 - a. Show that a linear functional $f \in X^*$ if and only if there exists M > 0 such that $|f(x)| \leq M||x||$
 - b. Define for all $f \in X^*$ that $||f||_{X^*} := \sup_{||x|| \le 1} |f(x)|$. Show that $(X^*, ||\cdot||_{X^*})$ is a normed space.
 - c. (Challenging). Show that $(X^*, \|\cdot\|_{X^*})$ satisfies the Cauchy criteria, that is, every Cauchy sequence in X^* converges to some element in X^* .

- 6. Let X, Y be a normed space. We say that $T: X \to Y$ is an isometry if $||Tx||_Y = ||x||_X$ for all $x \in X$.
 - a. Show that every isometry is injective.
 - b. For $f \in C^1([0,1])$, define $||f||_L := \sup_{x \neq y} \frac{|f(x) f(y)|}{|x y|}$ and $||f||_S := ||f'||_{\infty} = \sup_{t \in [0,1]} |f'(t)|$. Show that $||\cdot||_L$ and $||\cdot||_S$ satisfies (i) to (iii) in the definition of a norm but is not a norm on $C^1([0,1])$
 - c. Consider the subspace $Z:=\mathcal{C}^1_0([0,1]):=\{f\in\mathcal{C}(0,1):f(0)=0\}$. Show that $(Z,\|\cdot\|_L)$ and $(Z,\|\cdot\|_S)$ are normed spaces.
 - d. Consider $X := (Z, \|\cdot\|_L)$ and $Y := (Z, \|\cdot\|_S)$. Show that there exists a *surjective linear* isometry, or a linear isometric isomorphism, between X and Y.

7. (Functional Interpretation of FTC, cf. Tutorial 7). Let $X := (\mathcal{C}([0,1]), \|\cdot\|_{\infty})$ and $Y := (\mathcal{C}_0^1([0,1]), \|\cdot\|_L)$, which is defined in Q6. Define $T: X \to Y$ by $Tf(t) := \int_0^t f$ for all $t \in [0,1]$. Show that T is a linear isometric isomorphism between X, Y by finding explicitly the inverse of T.