Unless otherwise specified, if we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 Revisiting Convexity

Definition 1.1. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function. Let $c \in(a, b)$

- We say that f has a right-hand derivative at $c \in(a, b)$ if $f_{+}^{\prime}(c):=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}$ exists.
- We say that f has a left-hand derivative at $c \in(a, b)$ if $f_{-}^{\prime}(c):=\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}$ exists.

Quick Practice

0 . Let $f:(a, b) \rightarrow \mathbb{R}$. Show that f is differentiable at $c \in(a, b)$ if and only if f has an equal right-hand and left-hand derivative at c, that is, $f_{+}^{\prime}(c)=f_{-}^{\prime}(c)$.

1. Let $f: I:=(a, b) \rightarrow \mathbb{R}$. Show that f is convex if and only if for all $x<y<z \in I$, we have

$$
\frac{f(x)-f(y)}{x-y} \leq \frac{f(z)-f(y)}{z-y}
$$

2. Let $f: I:=(a, b) \rightarrow \mathbb{R}$ be a function. Let $p \in I$. Define $Q_{p}(x):=\frac{f(x)-f(p)}{x-p}$ for all $x \neq p \in I$.
(a) Show that f is convex if and only if for all $p \in I$ and $x \leq y \in I \backslash\{p\}$ we have $Q_{p}(x) \leq Q_{p}(y)$, that is, Q_{p} is increasing on $I \backslash\{p\}$
(b) Using (a), show that if f is convex, then f has left and right derivative at every $p \in I$.
(c) Hence, show that if f is convex, then for all $x \leq y \in I$, we have

$$
f_{-}^{\prime}(x) \leq f_{+}^{\prime}(x) \leq f_{-}^{\prime}(y) \leq f_{+}^{\prime}(y)
$$

3. Let $f: I:=(a, b) \rightarrow \mathbb{R}$ be a differentiable function.
(a) Show that f is convex if and only if f^{\prime} is increasing.
(b) Show that every convex differentiable function on I is continuously differentiable.
4. Let $f:(0,1) \rightarrow \mathbb{R}$ be a convex function.
(a) Show that f is continuous.
(b) Can f be nowhere differentiable? Give an example or prove your assertion otherwise.
5. Let $I:=(a, b)$. We say $g: I \rightarrow \mathbb{R}$ an affine function if $g(x):=M x+c$ for some $M, c \in \mathbb{R}$.
(a) Let L be a collection of affine functions on I. Define $\phi(x):=\sup \{f(x): f \in L\}$ for all $x \in I$. Show that ϕ is a convex function.
(b) Let $f: I \rightarrow \mathbb{R}$ be convex differentiable. Show that there exists a collection of affine functions T such that $f(x):=\{L(x): L \in T\}$.
(c) Let $f: I \rightarrow \mathbb{R}$ be convex (not necessarily differentiable). Is the conclusion of part (b) still true? Prove your assertion or provide a counter-example.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be convex. Suppose f is Riemann integrable over every compact interval $[a, b]$.
(a) Show that $\phi\left(\int_{0}^{1} f(t) d t\right) \leq \int_{0}^{1} \phi(f(t)) d t$. This is called the Jensen's inequality.
(b) Using (a), show that for all $0<p \leq q$ and $f \in \mathcal{R}([a, b])$ we have $\left(\int_{0}^{1}|f|^{p}\right)^{1 / p} \leq\left(\int_{0}^{1}|f|^{q}\right)^{1 / q}$
(c) Is part (a) still true if the domain of integration is changed, that is, do we have $\phi\left(\int_{a}^{b} f\right) \leq \int_{a}^{b} \phi \circ f$ for any $a<b \in \mathbb{R}$? Prove your assertion or provide a counter-example.
7. Let $X: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Define $\operatorname{var}(X):=\int_{0}^{1} X^{2}-\left(\int_{0}^{1} X\right)^{2}$.
(a) Show that $\operatorname{var}(X) \geq 0$.
(b) Show that $\operatorname{var}(X-c)=\operatorname{var}(X)$ for all $c \in \mathbb{R}$.
(c) Define $\mu:=\int_{0}^{1} X$. Show that $\operatorname{var}(X)=0$ if and only if $X(\omega)=\mu$ for all $\omega \in[0,1]$, that is, X is constantly μ.
(d) Suppose $m \leq X \leq M$ for some $m, M \in \mathbb{R}$ point-wise. Show that $\operatorname{var}(X) \leq \frac{(M-m)^{2}}{4}$

2 Approximations in Integration

Proposition 2.1. Let $f \in \mathcal{R}([0,1])$. Then for all partitions $P \subset[0,1]$, there exists a step function s_{P} such that $\int_{0}^{1} s_{P}=L(f, P)$. Furthermore, we can choose the collection $\left\{s_{P}\right\}$ such that $s_{Q} \geq s_{P}$ whenever $Q \succeq P$, that is, whenever Q refines P.
Proof. Let $P:=\left\{x_{i}\right\}_{i=1}^{k}$ be a partition over $[0,1]$. Then $L(f, P)=\sum_{i=1}^{k} m_{i}(f, P)\left(x_{i-1}, x_{i}\right)$. Now we define a step function s_{P} by $s_{P} \equiv m_{i}(f, P)$ on $\left(x_{i-1}, x_{i}\right)$. Note that there is a unique way of defining s_{P} on the end-points $P \subset[0,1]$ such that s_{P} is right-continuous on $[0,1)$ and left-continuous at 1 . We define s_{P} on the end-points according to that. Then it is clear that by splitting domains (or by Lecture Theorems), we have $\int_{0}^{1} s_{P}=L(f, P)$. Furthermore, it is not hard it see that for a refinement $Q \supset P$, we have $s_{Q} \geq s_{P}$ point-wise everywhere.

Example 2.2 (cf. Tutorial 6; motivated from 1920 Home Test 1 Q2). Recall that a function $s:[0,1] \rightarrow \mathbb{R}$ is a step function over $[0,1]$ if there exists a partition $P:=\left\{x_{i}\right\}_{i=0}^{k} \subset[0,1]$ such that s is constant over $\left(x_{i-1}, x_{i}\right)$.
(a) Let $f \in \mathcal{R}([0,1])$. Show that there exists a sequence of step functions $\left(s_{n}\right)$ over $[0,1]$ such that $s_{n} \leq s_{n+1}$ pointwise for all $n \in \mathbb{N}$ and $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$.
(b) Let $f \in \mathcal{C}([0,1])$, that is f is continuous. Show that there exists a sequence of step functions (s_{n}) uniformly approximating f, that is, $\lim _{n} \sup _{x \in[0,1]}\left|s_{n}(x)-f(x)\right|=0$. Hence, show that the sequence also satisfies $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$.
(c) Suppose $f \in \mathcal{R}([0,1])$. Is it always true that f is uniformly approximated by step functions, that is, can the assumption in (b) be relaxed to only integrable functions?

Solution. a. Let $\left(\epsilon_{n}\right)$ be a sequence of decreasing positive number such that $\epsilon_{n} \downarrow 0$. By considering lower integral, there exists a sequence of partitions $\left(P_{n}\right)$ such that $\int_{0}^{1} f-\epsilon_{n}<L\left(f, P_{n}\right)$. Now define $Q_{n}:=\bigcup_{i=1}^{n} P_{i}$. Then it is not hard to see that $\left(Q_{n}\right)$ is increasing with respect to refinements and we have $\int_{0}^{1} f-\epsilon_{n}<$ $L\left(f, Q_{n}\right)$. Therefore the step functions defined by $s_{n}:=s_{Q_{n}}$ according to the way stated in the beginning is point-wise increasing. Furthermore we have $\int_{0}^{1} f-\epsilon_{n}<\int_{0}^{1} s_{n}=L\left(f, Q_{n}\right)$. This clearly implies that $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$ as $n \rightarrow \infty$.
b. Let $\left(\epsilon_{n}\right)$ be a sequence of decreasing positive number such that $\epsilon_{n} \downarrow 0$. By compactness, f is uniformly continuous. Hence, there exists $\delta_{n}>0$ such that $|f(x)-f(y)|<\epsilon_{n}$ when $|x-y|<\delta_{n}$ for all $n \in \mathbb{N}$. For all $n \in \mathbb{N}$ choose a partition $P_{n}:=\left\{x_{i}^{n}\right\}_{i=1}^{k} \subset[0,1]$ such that $\max _{i=1}^{k}\left|x_{i}^{n}-x_{i-1}^{n}\right|<\delta_{n}$. Define s_{n} to be some step function such that s_{n} is right continuous on $[0,1)$ and left continuous at 1 such that $s_{n} \equiv c_{i, n}$ on $\left(x_{i-1}^{n}, x_{i}^{n}\right)$ for some $c_{i, n} \in\left(x_{i-1}^{n}, x_{i}^{n}\right)$. It follows clearly that $\sup _{x \in[0,1]}\left|s_{n}(x)-f(x)\right| \leq \epsilon_{n}$ for all $n \in \mathbb{N}$. Hence, $\left(s_{n}\right)$ approximates f uniformly.
Next we show that $\int_{0}^{1} s_{n} \rightarrow \int_{0}^{1} f$. This follows because we have for all $n \in \mathbb{N}$ that

$$
\left|\int_{0}^{1} s_{n}-\int_{0}^{1} f\right|=\left|\int_{0}^{1}\left(s_{n}-f\right)\right| \leq \int_{0}^{1}\left|s_{n}-f\right| \leq \sup _{x \in[0,1]}\left|s_{n}(x)-f(x)\right|
$$

c. No. We claim that that the indicator function $f:=\mathbb{1}_{\left\{\frac{1}{n}: n \in \mathbb{N}\right\}}$ cannot be uniformly approximated by step functions. Suppose not. Then there exists a step function $s:=\sum_{i=1}^{k} c_{i} \mathbb{1}_{\left(x_{i}, x_{1-i}\right)}$ where $c_{i} \in \mathbb{R}$ and $\left\{x_{i}\right\} \subset P$ is a partition such that $\sup _{x \in[0,1]}|f(x)-s(x)|<\frac{1}{3}$. It follows that $|f(x)-s(x)| \leq \frac{1}{3}$ for all $x \in\left(0=: x_{0}, x_{1}\right)$. In other words, we have $\left|c_{1}-f(x)\right| \leq \frac{1}{3}$ for all $x \in\left(0, x_{1}\right)$. Nonetheless, note that f attains both 0 and 1 infinitely over $\left(0, x_{1}\right)$. Therefore contradiction arises as it cannot happen at the same time that $\left|c_{1}\right| \leq \frac{1}{3}$ and $\left|c_{1}-1\right| \leq \frac{1}{3}$ by the triangle inequality.

