2021 - 2022 MATH2068 Tutorial 8 - Convexity and Approximations in Integration

Unless otherwise specified, if we write (a,b) or [a,b], it is always the case that a < b € R.

1 Revisiting Convexity
Definition 1.1. Let f : (a,b) — R be a function. Let ¢ € (a,b)
e We say that f has a right-hand derivative at ¢ € (a,b) if f (c) := lim,_, .+ L:f(c) exists.

x

e We say that f has a left-hand derivative at ¢ € (a,b) if f (¢) := lim,_,- w exists.

Quick Practice

0. Let f: (a,b) — R. Show that f is differentiable at ¢ € (a, b) if and only if f has an equal right-hand and
left-hand derivative at ¢, that is, f’ (c) = f’(c).

1. Let f:1I:=(a,b) —» R. Show that f is convex if and only if for all z < y < z € I, we have

f@) = fly) o f(z) = f(y)
r—vy B zZ—Y

xr—

2. Let f:I:=(a,b) = R be a function. Let p € I. Define Q,(z) := L{)(?) forallz #pel

(a) Show that f is convex if and only if for all p € I and =z <y € I\{p} we have Q,(z) < Q,(y), that
is, @p is increasing on I'\{p}

(b) Using (a), show that if f is convex, then f has left and right derivative at every p € I.

(c) Hence, show that if f is convex, then for all x <y € I, we have

foz) < file) < fL(y) < Fi(y)

3. Let f: I:=(a,b) — R be a differentiable function.

(a) Show that f is convex if and only if f’ is increasing.

(b) Show that every convex differentiable function on I is continuously differentiable.

4. Let f:(0,1) — R be a convex function.

(a) Show that f is continuous.

(b) Can f be nowhere differentiable? Give an example or prove your assertion otherwise.
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5. Let I := (a,b). We say ¢g: I — R an affine function if g(z) := Mz + ¢ for some M, c € R.
(a) Let L be a collection of affine functions on I. Define ¢(x) := sup{f(z) : f € L} for all x € I. Show
that ¢ is a convex function.

(b) Let f : I — R be convex differentiable. Show that there exists a collection of affine functions T
such that f(x):={L(z): L € T}.

(¢) Let f: I — R be convex (not necessarily differentiable). Is the conclusion of part (b) still true?
Prove your assertion or provide a counter-example.

6. Let f: R — R be a bounded function. Let ¢ : R — R be convex. Suppose f is Riemann integrable over
every compact interval [a, b].
(a) Show that (b(fol f(tydt) < fol o(f(t))dt. This is called the Jensen’s inequality.
(b) Using (a), show that for all 0 < p < g and f € R([a,b]) we have (fol IfIP)P < (fol | f]7)1/a

. . . . L . b b
(c) Is part (a) still true if the domain of integration is changed, that is, do we have ¢([, f) < [ ¢o f
for any a < b € R? Prove your assertion or provide a counter-example.

7. Let X : R — R be continuous. Define var(X) := fol X2 — (fol X)2.

(a) Show that var(X) > 0.
(b) Show that var(X — ¢) = var(X) for all c € R.

(c) Define p := fol X. Show that var(X) = 0 if and only if X(w) = u for all w € [0,1], that is, X is
constantly .

(d) Suppose m < X < M for some m, M € R point-wise. Show that var(X) < (M —m)®
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2 Approximations in Integration

Proposition 2.1. Let f € R([0,1]). Then for all partitions P C [0,1], there exists a step function sp such

that fol sp = L(f, P). Furthermore, we can choose the collection {sp} such that sq > sp whenever Q = P,
that is, whenever @ refines P.

Proof. Let P := {x;}¥_, be a partition over [0,1]. Then L(f,P) = Zle m;(f, P)(xi—1,%;). Now we define
a step function sp by sp = m;(f, P) on (z;—1,x;). Note that there is a unique way of defining sp on the
end-points P C [0,1] such that sp is right-continuous on [0, 1) and left-continuous at 1. We define sp on the
end-points according to that. Then it is clear that by splitting domains (or by Lecture Theorems), we have

fol sp = L(f, P). Furthermore, it is not hard it see that for a refinement ) D P, we have sg > sp point-wise
everywhere. O

Example 2.2 (cf. Tutorial 6; motivated from 1920 Home Test 1 Q2). Recall that a function s : [0,1] — R is a
step function over [0,1] if there exists a partition P := {x;}%_, C [0,1] such that s is constant over (z;_1, ;).

(a) Let f € R([0,1]). Show that there exists a sequence of step functions (sn) over [0,1] such that s, < Sp41
pointwise for alln € N and lim,, fol Sp = fol f.

(b) Let f € C([0,1]), that is f is continuous. Show that there exists a sequence of step functions (s,) uniformly
approzimating f, that is, limy, sup,¢o 1) [sn(x) — f(x)| = 0. Hence, show that the sequence also satisfies

lim,, fol Sp = fol f-

(c) Suppose f € R([0,1]). Is it always true that f is uniformly approzimated by step functions, that is, can
the assumption in (b) be relaxed to only integrable functions?

Solution. a. Let (¢,) be a sequence of decreasing positive number such that €, | 0. By considering lower
integral, there exists a sequence of partitions (P,) such that ]0] f—en < L(f, P,). Now define Q,, := Uj’zl P;.
Then it is not hard to see that (Q,) is increasing with respect to refinements and we have ]Ul f—en <
L(f,Qy). Therefore the step functions defined by s, = sq, according to the way stated in the beginning
is point-wise increasing. Furthermore we have f‘ol f—en < fol Sn = L(f,Q,). This clearly implies that

lim,, fol Sy = f(ll f asn — oo.

b. Let (e,) be a sequence of decreasing positive number such that €, | 0. By compactness, f is uniformly
continuous. Hence, there exists §,, > 0 such that |f(z) — f(y)| < €, when |z —y| < §,, for all n € N. For
all n € N choose a partition P, := {zF ,’i“:] C [0, 1] such that 11121}(5-;] ‘17” — 1?71! < 0,. Define s,, to be
some step function such that s, is right continuous on [0,1) and left continuous at 1 such that s, = ¢;
on (zjy,z}) for some ¢;;, € (zjy,27). It follows clearly that sup,cp 1) [sn(z) — f(z)| < €, for all n € N.
Hence, (s,) approximates f uniformly.

Next we show that f()l Sp — fol f. This follows because we have for all n € N that

[ L=

c. No. We claim that that the indicator function f := 1;1,,cy; cannot be uniformly approximated by step

[=|= [z s o s

z€[0,1]

functions. Suppose not. Then there exists a step function s := Zle ¢il(z; a,_,) Where ¢; € R and {z;} C P
is a partition such that sup,c( 1) [f(z) — s(z)| < L. It follows that | f(z) — s(z)| < 5 forall z € (0 =: g, 21).
In other words, we have |¢; — f(z)| < § for all # € (0,21). Nonetheless, note that f attains both 0 and 1
infinitely over (0,x1). Therefore contradiction arises as it cannot happen at the same time that |¢;| < %
and |¢; — 1] < i} by the triangle inequality.
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