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Unless otherwise specified, if we write (a, b) or [a, b], it is always the case that a < b ∈ R.

1 Revisiting Convexity

Definition 1.1. Let f : (a, b) → R be a function. Let c ∈ (a, b)

• We say that f has a right-hand derivative at c ∈ (a, b) if f ′
+(c) := limx→c+

f(x)−f(c)
x−c exists.

• We say that f has a left-hand derivative at c ∈ (a, b) if f ′
−(c) := limx→c−

f(x)−f(c)
x−c exists.

Quick Practice

0. Let f : (a, b) → R. Show that f is differentiable at c ∈ (a, b) if and only if f has an equal right-hand and
left-hand derivative at c, that is, f ′

+(c) = f ′
−(c).

1. Let f : I := (a, b) → R. Show that f is convex if and only if for all x < y < z ∈ I, we have

f(x)− f(y)

x− y
≤ f(z)− f(y)

z − y

2. Let f : I := (a, b) → R be a function. Let p ∈ I. Define Qp(x) :=
f(x)−f(p)

x−p for all x ̸= p ∈ I.

(a) Show that f is convex if and only if for all p ∈ I and x ≤ y ∈ I\{p} we have Qp(x) ≤ Qp(y), that
is, Qp is increasing on I\{p}

(b) Using (a), show that if f is convex, then f has left and right derivative at every p ∈ I.

(c) Hence, show that if f is convex, then for all x ≤ y ∈ I, we have

f ′
−(x) ≤ f ′

+(x) ≤ f ′
−(y) ≤ f ′

+(y)

3. Let f : I := (a, b) → R be a differentiable function.

(a) Show that f is convex if and only if f ′ is increasing.

(b) Show that every convex differentiable function on I is continuously differentiable.

4. Let f : (0, 1) → R be a convex function.

(a) Show that f is continuous.

(b) Can f be nowhere differentiable? Give an example or prove your assertion otherwise.
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5. Let I := (a, b). We say g : I → R an affine function if g(x) := Mx+ c for some M, c ∈ R.

(a) Let L be a collection of affine functions on I. Define ϕ(x) := sup{f(x) : f ∈ L} for all x ∈ I. Show
that ϕ is a convex function.

(b) Let f : I → R be convex differentiable. Show that there exists a collection of affine functions T
such that f(x) := {L(x) : L ∈ T}.

(c) Let f : I → R be convex (not necessarily differentiable). Is the conclusion of part (b) still true?
Prove your assertion or provide a counter-example.

6. Let f : R → R be a bounded function. Let ϕ : R → R be convex. Suppose f is Riemann integrable over
every compact interval [a, b].

(a) Show that ϕ(
∫ 1

0
f(t)dt) ≤

∫ 1

0
ϕ(f(t))dt. This is called the Jensen’s inequality.

(b) Using (a), show that for all 0 < p ≤ q and f ∈ R([a, b]) we have (
∫ 1

0
|f |p)1/p ≤ (

∫ 1

0
|f |q)1/q

(c) Is part (a) still true if the domain of integration is changed, that is, do we have ϕ(
∫ b

a
f) ≤

∫ b

a
ϕ ◦ f

for any a < b ∈ R? Prove your assertion or provide a counter-example.

7. Let X : R → R be continuous. Define var(X) :=
∫ 1

0
X2 − (

∫ 1

0
X)2.

(a) Show that var(X) ≥ 0.

(b) Show that var(X − c) = var(X) for all c ∈ R.

(c) Define µ :=
∫ 1

0
X. Show that var(X) = 0 if and only if X(ω) = µ for all ω ∈ [0, 1], that is, X is

constantly µ.

(d) Suppose m ≤ X ≤ M for some m,M ∈ R point-wise. Show that var(X) ≤ (M−m)2

4
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2 Approximations in Integration

Proposition 2.1. Let f ∈ R([0, 1]). Then for all partitions P ⊂ [0, 1], there exists a step function sP such

that
∫ 1

0
sP = L(f, P ). Furthermore, we can choose the collection {sP } such that sQ ≥ sP whenever Q ⪰ P ,

that is, whenever Q refines P .

Proof. Let P := {xi}ki=1 be a partition over [0, 1]. Then L(f, P ) =
∑k

i=1 mi(f, P )(xi−1, xi). Now we define
a step function sP by sP ≡ mi(f, P ) on (xi−1, xi). Note that there is a unique way of defining sP on the
end-points P ⊂ [0, 1] such that sP is right-continuous on [0, 1) and left-continuous at 1. We define sP on the
end-points according to that. Then it is clear that by splitting domains (or by Lecture Theorems), we have∫ 1

0
sP = L(f, P ). Furthermore, it is not hard it see that for a refinement Q ⊃ P , we have sQ ≥ sP point-wise

everywhere.

Example 2.2 (cf. Tutorial 6; motivated from 1920 Home Test 1 Q2). Recall that a function s : [0, 1] → R is a
step function over [0, 1] if there exists a partition P := {xi}ki=0 ⊂ [0, 1] such that s is constant over (xi−1, xi).

(a) Let f ∈ R([0, 1]). Show that there exists a sequence of step functions (sn) over [0, 1] such that sn ≤ sn+1

pointwise for all n ∈ N and limn

∫ 1

0
sn =

∫ 1

0
f .

(b) Let f ∈ C([0, 1]), that is f is continuous. Show that there exists a sequence of step functions (sn) uniformly
approximating f , that is, limn supx∈[0,1] |sn(x)− f(x)| = 0. Hence, show that the sequence also satisfies

limn

∫ 1

0
sn =

∫ 1

0
f .

(c) Suppose f ∈ R([0, 1]). Is it always true that f is uniformly approximated by step functions, that is, can
the assumption in (b) be relaxed to only integrable functions?

Solution. a. Let (ϵn) be a sequence of decreasing positive number such that ϵn ↓ 0. By considering lower

integral, there exists a sequence of partitions (Pn) such that
∫ 1

0
f−ϵn < L(f, Pn). Now defineQn :=

⋃n
i=1 Pi.

Then it is not hard to see that (Qn) is increasing with respect to refinements and we have
∫ 1

0
f − ϵn <

L(f,Qn). Therefore the step functions defined by sn := sQn according to the way stated in the beginning

is point-wise increasing. Furthermore we have
∫ 1

0
f − ϵn <

∫ 1

0
sn = L(f,Qn). This clearly implies that

limn

∫ 1

0
sn =

∫ 1

0
f as n → ∞.

b. Let (ϵn) be a sequence of decreasing positive number such that ϵn ↓ 0. By compactness, f is uniformly
continuous. Hence, there exists δn > 0 such that |f(x)− f(y)| < ϵn when |x− y| < δn for all n ∈ N. For
all n ∈ N choose a partition Pn := {xn

i }ki=1 ⊂ [0, 1] such that maxki=1

∣∣xn
i − xn

i−1

∣∣ < δn. Define sn to be
some step function such that sn is right continuous on [0, 1) and left continuous at 1 such that sn ≡ ci,n
on (xn

i−1, x
n
i ) for some ci,n ∈ (xn

i−1, x
n
i ). It follows clearly that supx∈[0,1] |sn(x)− f(x)| ≤ ϵn for all n ∈ N.

Hence, (sn) approximates f uniformly.

Next we show that
∫ 1

0
sn →

∫ 1

0
f . This follows because we have for all n ∈ N that∣∣∣∣∫ 1

0

sn −
∫ 1

0

f

∣∣∣∣ = ∣∣∣∣∫ 1

0

(sn − f)

∣∣∣∣ ≤ ∫ 1

0

|sn − f | ≤ sup
x∈[0,1]

|sn(x)− f(x)|

c. No. We claim that that the indicator function f := 1{ 1
n :n∈N} cannot be uniformly approximated by step

functions. Suppose not. Then there exists a step function s :=
∑k

i=1 ci1(xi,x1−i) where ci ∈ R and {xi} ⊂ P

is a partition such that supx∈[0,1] |f(x)− s(x)| < 1
3 . It follows that |f(x)− s(x)| ≤ 1

3 for all x ∈ (0 =: x0, x1).

In other words, we have |c1 − f(x)| ≤ 1
3 for all x ∈ (0, x1). Nonetheless, note that f attains both 0 and 1

infinitely over (0, x1). Therefore contradiction arises as it cannot happen at the same time that |c1| ≤ 1
3

and |c1 − 1| ≤ 1
3 by the triangle inequality.
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