Unless otherwise specified, if we write (a, b) or [a, b], it is always the case that $a < b \in \mathbb{R}$.

1 The Fundamental Theorem of Calculus

Theorem 1.1. Let $f \in \mathcal{C}([a,b])$. Define the function $F(t) := \int_a^t f$ for all $t \in [a,b]$.

- i. Then F is continuous on [a, b] and differentiable on (a, b) with F' = f on (a, b).
- ii. Furthermore $F(y) F(x) = \int_x^y f$ for all $x \le y \in [a, b]$.

Remark. (i) may not be true if $f \in \mathcal{R}([a, b])$. (ii) is still true as long as $f \in \mathcal{R}([a, b])$ and F is an anti-derivative of f, that is, f is some function satisfying (i).

Conceptual Practice

1. Let $f \in \mathcal{R}([a, b])$. Define $F(t) := \int_a^t f$ for all $t \in [a, b]$.

- (a) Show that F is a Lipschitz function on [a, b].
- (b) Suppose f is continuous at $c \in [a, b]$. Show that F is differentiable at $c \in [a, b]$
- (c) Let f be increasing on [a, b]. Show that there exists a Lipschitz function F and a countable set $C \subset [a, b]$ such that F' = f on $[a, b] \setminus C$.

Solution. Covered in the Tutorial.

- 2. Let $G(x) := x^2 \cos(1/x)$ for $x \neq 0$ and G(0) := 0 for all $x \in \mathbb{R}$.
 - (a) Show that G is differentiable and compute its derivative.
 - (b) Define $F(t) := \int_0^t \sin(1/x) dx$ for all $t \in \mathbb{R}$. Show that F is a differentiable function.

Solution. (a). $G'(x) = 2x \cos(1/x) + \sin(1/x)$ for all $x \neq 0$ by product rule and G'(0) = 0. (b). Define $h(x) := 2x \cos(1/x)$ for $x \neq 0$ and h(0) := 0. Then h is continuous by sandwich theorem. Define $H(t) := \int_0^t h(x) dx$ for all $t \in \mathbb{R}$. Then H is differentiable with H' = h by FTC. Define $f(x) := \sin(1/x)$ for $x \neq 0$ and f(0) := 0. Note that f(x) = G'(x) - h(x) for all $x \in \mathbb{R}$. Since G', h is Riemann integrable, it follows that $F(t) = \int_0^t f(x) dx = \int_0^t G'(x) + h(x) dx = G(t) - H(t)$ for all $t \in \mathbb{R}$. Since G, Hare differentiable, it follows that F is differentiable.

- 3. Let $f : [a, b] \to \mathbb{R}$ be Riemann integrable.
 - (a) Show that $F(x) F(y) = \int_y^x f$ for all $x \le y \in [a, b]$ if $F : [a, b] \to \mathbb{R}$ is differentiable on (a, b) with F' = f and continuous on [a, b].
 - (b) Give a shorter proof for part (i) if f is also continuous.

Solution. (a). By MVT; covered in lecture notes. (b). Note that $G(t) := \int_a^t f(x) dx$ is differentiable by FTC. Furthermore, G' = F' = f. Hence, F = G + C for some constant $C \in \mathbb{R}$. The equality of part (a) follows clearly.

4. Let $f, g: \mathbb{R} \to \mathbb{R}$ be continuously differentiable functions. Show that for all $a < b \in \mathbb{R}$

$$f(b)g(b) - f(a)g(a) = \int_{a}^{b} fg' + \int_{a}^{b} f'g$$

Solution. Note that (fg)' is continuous by assumption. The result follows from FTC and product rule.

- 5. (Alternative viewpoint on FTC, modified). For all Lipschitz functions $f : [0,1] \to \mathbb{R}$, we define the constant $||f||_L := \sup_{x \neq y} \left| \frac{f(x) f(y)}{x y} \right|$. Furthermore, for all continuous functions $f : [0,1] \to \mathbb{R}$, we define the constant $||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|$.
 - (a) Let $f \in \mathcal{C}^1([0,1])$. Show that $||f||_L = ||f'||_{\infty}$. Hence, show that $||f||_L = 0$ if and only if f is a constant function if $f \in \mathcal{C}^1([0,1])$.
 - (b) Let $\mathcal{C}_0^1([0,1]) := \{f \in \mathcal{C}^1([0,1]) : f(0) = 0\}$. Show that $\mathcal{C}_0^1([0,1])$ is a vector subspace of $\mathcal{C}^1([0,1])$ with the property that if $f \in \mathcal{C}_0^1([0,1])$ then f = 0 if and only if $||f||_L = 0$. We call $\mathcal{C}_0^1[0,1]$ the space of pointed \mathcal{C}^1 maps.
 - (c) Let $T: \mathcal{C}[0,1] \to \mathcal{C}_0^1[0,1]$ be defined by $Tf(t) := \int_0^t f$ for all $t \in [0,1]$ and $f \in \mathcal{C}[0,1]$.
 - i. Show that T is a well-defined linear map between vector spaces.
 - ii. Show that T is a linear isomorphism by explicitly finding the inverse for T.
 - iii. Show that T is a linear isometric isomorphism, that is, T is a linear isomorphism and for all $f \in \mathcal{C}([0,1])$, we have $\|f\|_{\infty} = \|Tf\|_L$
 - iv. Is T invertible if we consider the codomain to be $\mathcal{C}^1([0,1])$ instead of the space of pointed maps?

Solution. (a) and (b) are easy and so whose solutions are omitted. (c). (i) - (ii) follows from FTC. (iii). Note that f is the derivative of Tf. It follows from Tutorial 2 Q4 that $||f||_{\infty} = ||(Tf)'||_{\infty} = ||Tf||_L$, which is not hard to show. (iv). No, because by the definition of T, we always have Tf(0) = 0 for all $f \in \mathcal{C}([0, 1])$. Nonetheless, it is not always the case that g(0) = 0 for $g \in \mathcal{C}^1([0, 1])$ and so T is not surjective.

- 6. (Riemann–Stieltjes integral) Let $f : [0,1] \to \mathbb{R}$ be a bounded function and $g : [0,1] \to \mathbb{R}$ be an increasing function. Let $P \subset [0,1]$ be a partition. We define
 - the upper sum $U(f, P, g) := \sum_{i=1}^{k} M_i(f, P)(g(x_i) g(x_{i-1}))$
 - and the lower sum $U(f, P, g) := \sum_{i=1}^{k} m_i(f, P)(g(x_i) g(x_{i-1}))$

It is not hard to see that $(U(f, P, g))_{P \subset [0,1]}$ is a bounded below decreasing net and $(L(f, P, g))_{P \subset [0,1]}$ is a bounded above increasing net with respect to refinements. Therefore, similar to the Darboux case, we can define $\overline{\int}_0^1 f dg := \lim_P U(f, P, g) = \inf_P U(f, P, g)$ and $\underline{\int}_0^1 f dg := \lim_P L(f, P, g) = \sup_P L(f, P, g)$. These are called the Riemann-Stieltjes upper and lower integrals of f with respect to g respectively. We say that f is Riemann-Stieltjes integrable with repsect to g if $\overline{\int}_0^1 f dg = \underline{\int}_0^1 f dg$; we write the Riemann-Stieltjes integral as $\int_0^1 f dg$

- (a) Verify that the upper and lower Riemann-Stieltjes integrals are well-defined.
- (b) Show that f is R-S (Riemann-Stieltjes) intergrable with respect to g is and only if for all $\epsilon > 0$ there exists a partition $P \subset [0, 1]$ such that $U(f, P, g) L(f, P, g) < \epsilon$.
- (c) Suppose f is R-S integrable with respect to g and g is continuously differentiable. Suppose further that $fg' \in \mathcal{R}([0,1])$. Show that $\int_0^1 f dg = \int_0^1 fg'$ where the right-hand side is the ordinary integral.

Solution. (a), (b) are similar to the case of Darboux integrals and so are omitted.

(c). It suffices to show that for all $\epsilon > 0$, there exists a partition $P \subset [0,1]$ that $\left| \int_0^1 fg' - U(f,P,g) \right| < \epsilon$. To this end. let $\epsilon > 0$. Then as $fg', g' \in \mathcal{R}([0,1])$, there exists a (largely refined) partition P such that $\left| U(fg',P) - \int_0^1 fg' \right| < \epsilon$, $\sum_i \omega_i (gf',P) \Delta x_i < \epsilon$ and $\sum_i \omega_i (g,P) \Delta x_i < \epsilon$. Next, we claim that

$$|\sup fg'(I_i) - \sup(f(I_i))g'(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])$$

for all $x \in I_i$ and I_i an interval component of P. To show the claim, let (x_n) and (y_n) be such that $fg'(x_n) \to \sup fg'(I_i)$ and $f(y_n) \to \sup f(I_i)$. Then we have for all $n \in \mathbb{N}$ that

$$|fg'(x_n) - f(y_n)g(x)| \le |fg'(x_n) - fg'(y_n)| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f(y_n)||g(y_n) - g(x)| \le \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1])| + |f|([0, 1])| \le \omega_i(fg', P) + \omega_i(g', P) \le \omega_i(g', P) \le \omega_i(g', P) + \omega_i(g', P) + \omega_i(g', P) \le \omega_i(g', P) \le \omega_i(g', P) + \omega_i(g', P) \le \omega_i(g$$

The claim follows as $n \to \infty$. With the help of the claim as well as MVT on g, it is then not hard to see that we have the approximation $|U(fg', P) - U(f, P, g)| \leq \sum_i \omega_i(fg', P) + \omega_i(g', P) \sup |f|([0, 1]) \leq (1 + \sup f([0, 1]))\epsilon$. The result follows clearly.

2 Riemann Sum

Theorem 2.1. Let $f : [a, b] \to \mathbb{R}$ be bounded. Then $f \in \mathcal{R}([a, b])$ if and only if there exists $A \in \mathbb{R}$ such that for all $\epsilon > 0$, there exists $\delta > 0$ such that for all partitions $P := \{x_i\}_{i=0}^k \subset [a, b]$ with $||P|| := \max_{i=1}^k |x_i - x_{i-1}| < \delta$ and for all tags $(\xi_i)_{i=1}^k$, that is, $\xi_i \in [x_{i-1}, x_i]$, we have

$$\left|\sum_{i=1}^{k} f(\xi_i)(x_i - x_{i-1}) - A\right| < \epsilon$$

In that case, we in fact have $A = \int_a^b f$. We denote $R(f, P, \{\xi_i\}) := \sum_{i=1}^k f(\xi_i)(x_i - x_{i-1})$ the Riemann sum with respect to the partition P and tags $\{x_i\}$.

Quick Practice

- 1. Let $F : \mathbb{R} \to \mathbb{R}$ be continuously differentiable. Using Riemann sums, show that $F(a) F(b) = \int_{b}^{a} F'$. Solution. From the textbook.
- 2. Show using Riemann sums that $\left|\int_{a}^{b} f\right| \leq M(b-a)$ if $f \in \mathcal{R}([a,b])$ and $|f| \leq M$ for M > 0. Solution. From the textbook.
- 3. Evaluate the following limits

(a)
$$\lim_{n} \sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$

(b) $\lim_{n} \frac{1}{n} (\sin\left(\frac{\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right) + \dots + \sin(\pi))$
(c) $\lim_{n} (\frac{n+1}{n^2} + \frac{n+2}{n^2} + \dots + \frac{2n}{n^2})$

Solution. Write the sums into the form $\sum_{k=1}^{n} \frac{1}{n} f(\frac{k}{n})$ where $f \in \mathcal{R}([0,1])$. Then it follows from the Riemann sum characterization that $\lim_{n} \sum_{k=1}^{n} \frac{1}{n} f(\frac{k}{n}) = \int_{0}^{1} f(t) dt$.

- Show that ∫₀¹ x² = 1/3 by considering Riemann sums.
 Solution. Consider limits similar to those in Q3.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be decreasing. Show that for all $N > 1 \in \mathbb{N}$, we have

$$\int_{1}^{N+1} f \le \sum_{k=1}^{N} f(k) \le \int_{0}^{N} f$$

Solution. Consider suitable upper and lower sums.

6. Show that for all $n > 2 \in \mathbb{N}$, we have

$$n\sum_{k=n}^{\infty}\frac{1}{k^2} \le 2$$

Solution. Use Q5 and take limits.