
2021 - 2022 MATH2068 Tutorial 7 - FTC and Riemann Sums (Suggested Solutions in Brief)

Unless otherwise specified, if we write (a, b) or [a, b], it is always the case that a < b ∈ R.

1 The Fundamental Theorem of Calculus

Theorem 1.1. Let f ∈ C([a, b]). Define the function F (t) :=
∫ t

a
f for all t ∈ [a, b].

i. Then F is continuous on [a, b] and differentiable on (a, b) with F ′ = f on (a, b).

ii. Furthermore F (y)− F (x) =
∫ y

x
f for all x ≤ y ∈ [a, b].

Remark. (i) may not be true if f ∈ R([a, b]). (ii) is still true as long as f ∈ R([a, b]) and F is an anti-derivative
of f , that is, f is some function satisfying (i).

Conceptual Practice

1. Let f ∈ R([a, b]). Define F (t) :=
∫ t

a
f for all t ∈ [a, b].

(a) Show that F is a Lipschitz function on [a, b].

(b) Suppose f is continuous at c ∈ [a, b]. Show that F is differentiable at c ∈ [a, b]

(c) Let f be increasing on [a, b]. Show that there exists a Lipschitz function F and a countable set
C ⊂ [a, b] such that F ′ = f on [a, b]\C.

Solution. Covered in the Tutorial.

2. Let G(x) := x2 cos(1/x) for x ̸= 0 and G(0) := 0 for all x ∈ R.

(a) Show that G is differentiable and compute its derivative.

(b) Define F (t) :=
∫ t

0
sin(1/x)dx for all t ∈ R. Show that F is a differentiable function..

Solution. (a). G′(x) = 2x cos(1/x) + sin(1/x) for all x ̸= 0 by product rule and G′(0) = 0.
(b). Define h(x) := 2x cos(1/x) for x ̸= 0 and h(0) := 0. Then h is continuous by sandwich theorem.

Define H(t) :=
∫ t

0
h(x)dx for all t ∈ R. Then H is differentiable with H ′ = h by FTC. Define f(x) :=

sin(1/x) for x ̸= 0 and f(0) := 0. Note that f(x) = G′(x) − h(x) for all x ∈ R. Since G′, h is Riemann

integrable, it follows that F (t) =
∫ t

0
f(x)dx =

∫ t

0
G′(x) + h(x)dx = G(t)−H(t) for all t ∈ R. Since G,H

are differentiable, it follows that F is differentiable.

3. Let f : [a, b] → R be Riemann integrable.

(a) Show that F (x)− F (y) =
∫ x

y
f for all x ≤ y ∈ [a, b] if F : [a, b] → R is differentiable on (a, b) with

F ′ = f and continuous on [a, b].

(b) Give a shorter proof for part (i) if f is also continuous.

Solution. (a). By MVT; covered in lecture notes. (b). Note that G(t) :=
∫ t

a
f(x)dx is differentiable by

FTC. Furthermore, G′ = F ′ = f . Hence, F = G+C for some constant C ∈ R. The equality of part (a)
follows clearly.

4. Let f, g : R → R be continuously differentiable functions. Show that for all a < b ∈ R

f(b)g(b)− f(a)g(a) =

∫ b

a

fg′ +

∫ b

a

f ′g

Solution. Note that (fg)′ is continuous by assumption. The result follows from FTC and product
rule.
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5. (Alternative viewpoint on FTC, modified). For all Lipschitz functions f : [0, 1] → R, we define the

constant ∥f∥L := supx ̸=y

∣∣∣ f(x)−f(y)
x−y

∣∣∣. Furthermore, for all continuous functions f : [0, 1] → R, we define

the constant ∥f∥∞ := supx∈[0,1] |f(x)|.

(a) Let f ∈ C1([0, 1]). Show that ∥f∥L = ∥f ′∥∞. Hence, show that ∥f∥L = 0 if and only if f is a
constant function if f ∈ C1([0, 1]).

(b) Let C1
0([0, 1]) := {f ∈ C1([0, 1]) : f(0) = 0}. Show that C1

0([0, 1]) is a vector subspace of C1([0, 1])
with the property that if f ∈ C1

0([0, 1]) then f = 0 if and only if ∥f∥L = 0. We call C1
0 [0, 1] the

space of pointed C1 maps.

(c) Let T : C[0, 1] → C1
0 [0, 1] be defined by Tf(t) :=

∫ t

0
f for all t ∈ [0, 1] and f ∈ C[0, 1].

i. Show that T is a well-defined linear map between vector spaces.

ii. Show that T is a linear isomorphism by explicitly finding the inverse for T .

iii. Show that T is a linear isometric isomorphism, that is, T is a linear isomorphism and for all
f ∈ C([0, 1]), we have ∥f∥∞ = ∥Tf∥L

iv. Is T invertible if we consider the codomain to be C1([0, 1]) instead of the space of pointed maps?

Solution. (a) and (b) are easy and so whose solutions are omitted. (c). (i) - (ii) follows from FTC. (iii).
Note that f is the derivative of Tf . It follows from Tutorial 2 Q4 that ∥f∥∞ = ∥(Tf)′∥∞ = ∥Tf∥L,
which is not hard to show. (iv). No, because by the definition of T , we always have Tf(0) = 0 for
all f ∈ C([0, 1]). Nonetheless, it is not always the case that g(0) = 0 for g ∈ C1([0, 1]) and so T is not
surjective.

6. (Riemann–Stieltjes integral) Let f : [0, 1] → R be a bounded function and g : [0, 1] → R be an increasing
function. Let P ⊂ [0, 1] be a partition. We define

• the upper sum U(f, P, g) :=
∑k

i=1 Mi(f, P )(g(xi)− g(xi−1))

• and the lower sum U(f, P, g) :=
∑k

i=1 mi(f, P )(g(xi)− g(xi−1))

It is not hard to see that (U(f, P, g))P⊂[0,1] is a bounded below decreasing net and (L(f, P, g))P⊂[0,1] is
a bounded above increasing net with respect to refinements. Therefore, similar to the Darboux case, we

can define
∫ 1

0
fdg := limP U(f, P, g) = infP U(f, P, g) and

∫ 1

0
fdg := limP L(f, P, g) = supL(f, P, g).

These are called the Riemann-Stieltjes upper and lower intergrals of f with respect to g respectively. We

say that f is Riemann-Stieltjes integrable with repsect to g if
∫ 1

0
fdg =

∫ 1

0
fdg; we write the Riemann-

Stieltjes integral as
∫ 1

0
fdg

(a) Verify that the upper and lower Riemann-Stieltjes integrals are well-defined.

(b) Show that f is R-S (Riemann-Stieltjes) intergrable with respect to g is and only if for all ϵ > 0
there exists a partition P ⊂ [0, 1] such that U(f, P, g)− L(f, P, g) < ϵ.

(c) Suppose f is R-S integrable with respect to g and g is continuously differentiable. Suppose further

that fg′ ∈ R([0, 1]). Show that
∫ 1

0
fdg =

∫ 1

0
fg′ where the right-hand side is the ordinary intergral.

Solution. (a), (b) are similar to the case of Darboux integrals and so are omitted.

(c). It suffices to show that for all ϵ > 0, there exists a partition P ⊂ [0, 1] that
∣∣∣∫ 1

0
fg′ − U(f, P, g)

∣∣∣ < ϵ.

To this end. let ϵ > 0. Then as fg′, g′ ∈ R([0, 1]), there exists a (largely refined) partition P such that∣∣∣U(fg′, P )−
∫ 1

0
fg′

∣∣∣ < ϵ,
∑

i ωi(gf
′, P )∆xi < ϵ and

∑
i ωi(g, P )∆xi < ϵ. Next, we claim that

|sup fg′(Ii)− sup(f(Ii))g
′(x)| ≤ ωi(fg

′, P ) + ωi(g
′, P ) sup |f |([0, 1])

for all x ∈ Ii and Ii an interval component of P . To show the claim, let (xn) and (yn) be such that
fg′(xn) → sup fg′(Ii) and f(yn) → sup f(Ii). Then we have for all n ∈ N that

|fg′(xn)− f(yn)g(x)| ≤ |fg′(xn)− fg′(yn)|+ |f(yn)||g(yn)− g(x)| ≤ ωi(fg
′, P )+ωi(g

′, P ) sup |f |([0, 1])

The claim follows as n → ∞. With the help of the claim as well as MVT on g, it is then not hard to
see that we have the approximation |U(fg′, P )− U(f, P, g)| ≤

∑
i ωi(fg

′, P ) + ωi(g
′, P ) sup |f |([0, 1]) ≤

(1 + sup f([0, 1]))ϵ. The result follows clearly.
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2 Riemann Sum

Theorem 2.1. Let f : [a, b] → R be bounded. Then f ∈ R([a, b]) if and only if there exists A ∈ R such that for
all ϵ > 0, there exists δ > 0 such that for all partitions P := {xi}ki=0 ⊂ [a, b] with ∥P∥ := maxki=1 |xi − xi−1| < δ
and for all tags (ξi)

k
i=1, that is, ξi ∈ [xi−1, xi], we have∣∣∣∣∣

k∑
i=1

f(ξi)(xi − xi−1)−A

∣∣∣∣∣ < ϵ

In that case, we in fact have A =
∫ b

a
f . We denote R(f, P, {ξi}) :=

∑k
i=1 f(ξi)(xi − xi−1) the Riemann sum

with respect to the partition P and tags {xi}.

Quick Practice

1. Let F : R → R be continuously differentiable. Using Riemann sums, show that F (a)− F (b) =
∫ a

b
F ′.

Solution. From the textbook.

2. Show using Riemann sums that
∣∣∣∫ b

a
f
∣∣∣ ≤ M(b− a) if f ∈ R([a, b]) and |f | ≤ M for M > 0.

Solution. From the textbook.

3. Evaluate the following limits

(a) lim
n

n∑
k=1

n

n2 + k2

(b) lim
n

1

n
(sin

(π
n

)
+ sin

(
2π

n

)
+ · · ·+ sin(π))

(c) lim
n
(
n+ 1

n2
+

n+ 2

n2
+ · · ·+ 2n

n2
)

Solution. Write the sums into the form
∑n

k=1
1
nf(

k
n ) where f ∈ R([0, 1]). Then it follows from the

Riemann sum characterization that limn

∑n
k=1

1
nf(

k
n ) =

∫ 1

0
f(t)dt.

4. Show that
∫ 1

0
x2 = 1/3 by considering Riemann sums.

Solution. Consider limits similar to those in Q3.

5. Let f : R → R be decreasing. Show that for all N > 1 ∈ N, we have∫ N+1

1

f ≤
N∑

k=1

f(k) ≤
∫ N

0

f

Solution. Consider suitable upper and lower sums.

6. Show that for all n > 2 ∈ N, we have

n

∞∑
k=n

1

k2
≤ 2

Solution. Use Q5 and take limits.
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