Unless otherwise specified, if we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 The Fundamental Theorem of Calculus

Theorem 1.1. Let $f \in \mathcal{C}([a, b])$. Define the function $F(t):=\int_{a}^{t} f$ for all $t \in[a, b]$.
i. Then F is continuous on $[a, b]$ and differentiable on (a, b) with $F^{\prime}=f$ on (a, b).
ii. Furthermore $F(y)-F(x)=\int_{x}^{y} f$ for all $x \leq y \in[a, b]$.

Remark. (i) may not be true if $f \in \mathcal{R}([a, b])$. (ii) is still true as long as $f \in \mathcal{R}([a, b])$ and F is an anti-derivative of f, that is, f is some function satisfying (i).

Conceptual Practice

1. Let $f \in \mathcal{R}([a, b])$. Define $F(t):=\int_{a}^{t} f$ for all $t \in[a, b]$.
(a) Show that F is a Lipschitz function on $[a, b]$.
(b) Suppose f is continuous at $c \in[a, b]$. Show that F is differentiable at $c \in[a, b]$
(c) Let f be increasing on $[a, b]$. Show that there exists a Lipschitz function F and a countable set $C \subset[a, b]$ such that $F^{\prime}=f$ on $[a, b] \backslash C$.
2. Let $G(x):=x^{2} \cos (1 / x)$ for $x \neq 0$ and $G(0):=0$ for all $x \in \mathbb{R}$.
(a) Show that G is differentiable and compute its derivative.
(b) Define $F(t):=\int_{0}^{t} \sin (1 / x) d x$ for all $t \in \mathbb{R}$. Show that F is a differentiable function..
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable.
(a) Show that $F(x)-F(y)=\int_{y}^{x} f$ for all $x \leq y \in[a, b]$ if $F:[a, b] \rightarrow \mathbb{R}$ is differentiable on (a, b) with $F^{\prime}=f$ and continuous on $[a, b]$.
(b) Give a shorter proof for part (i) if f is also continuous.
4. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable functions. Show that for all $a<b \in \mathbb{R}$

$$
f(b) g(b)-f(a) g(a)=\int_{a}^{b} f g^{\prime}+\int_{a}^{b} f^{\prime} g
$$

5. (Alternative viewpoint on FTC, modified). For all Lipschitz functions $f:[0,1] \rightarrow \mathbb{R}$, we define the constant $\|f\|_{L}:=\sup _{x \neq y}\left|\frac{f(x)-f(y)}{x-y}\right|$. Furthermore, for all continuous functions $f:[0,1] \rightarrow \mathbb{R}$, we define the constant $\|f\|_{\infty}:=\sup _{x \in[0,1]}|f(x)|$.
(a) Let $f \in \mathcal{C}^{1}([0,1])$. Show that $\|f\|_{L}=\left\|f^{\prime}\right\|_{\infty}$. Hence, show that $\|f\|_{L}=0$ if and only if f is a constant function if $f \in \mathcal{C}^{1}([0,1])$.
(b) Let $\mathcal{C}_{0}^{1}([0,1]):=\left\{f \in \mathcal{C}^{1}([0,1]): f(0)=0\right\}$. Show that $\mathcal{C}_{0}^{1}([0,1])$ is a vector subspace of $\mathcal{C}^{1}([0,1])$ with the property that if $f \in \mathcal{C}_{0}^{1}([0,1])$ then $f=0$ if and only if $\|f\|_{L}=0$. We call $\mathcal{C}_{0}^{1}[0,1]$ the space of pointed \mathcal{C}^{1} maps.
(c) Let $T: \mathcal{C}[0,1] \rightarrow \mathcal{C}_{0}^{1}[0,1]$ be defined by $T f(t):=\int_{0}^{t} f$ for all $t \in[0,1]$ and $f \in \mathcal{C}[0,1]$.
i. Show that T is a well-defined linear map between vector spaces.
ii. Show that T is a linear isomorphism by explicitly finding the inverse for T.
iii. Show that T is a linear isometric isomorphism, that is, T is a linear isomorphism and for all $f \in \mathcal{C}([0,1])$, we have $\|f\|_{\infty}=\|T f\|_{L}$
iv. Is T invertible if we consider the codomain to be $\mathcal{C}^{1}([0,1])$ instead of the space of pointed maps?
6. (Riemann-Stieltjes integral) Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded function and $g:[0,1] \rightarrow \mathbb{R}$ be an increasing function. Let $P \subset[0,1]$ be a partition. We define

- the upper sum $U(f, P, g):=\sum_{i=1}^{k} M_{i}(f, P)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)$
- and the lower sum $U(f, P, g):=\sum_{i=1}^{k} m_{i}(f, P)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)$

It is not hard to see that $(U(f, P, g))_{P \subset[0,1]}$ is a bounded below decreasing net and $(L(f, P, g))_{P \subset[0,1]}$ is a bounded above increasing net with respect to refinements. Therefore, similar to the Darboux case, we can define $\int_{0}^{1} f d g:=\lim _{P} U(f, P, g)=\inf _{P} U(f, P, g)$ and $\int_{0}^{1} f d g:=\lim _{P} L(f, P, g)=\sup L(f, P, g)$. These are called the Riemann-Stieltjes upper and lower intergrals of f with respect to g respectively. We say that f is Riemann-Stieltjes integrable with repsect to g if $\bar{\int}_{0}^{1} f d g=\int_{0}^{1} f d g$; we write the RiemannStieltjes integral as $\int_{0}^{1} f d g$
(a) Verify that the upper and lower Riemann-Stieltjes integrals are well-defined.
(b) Show that f is R-S (Riemann-Stieltjes) intergrable with respect to g is and only if for all $\epsilon>0$ there exists a partition $P \subset[0,1]$ such that $U(f, P, g)-L(f, P, g)<\epsilon$.
(c) Suppose f is R-S integrable with respect to g and g is continuously differentiable. Suppose further that $f g^{\prime} \in \mathcal{R}([0,1])$. Show that $\int_{0}^{1} f d g=\int_{0}^{1} f g^{\prime}$ where the right-hand side is the ordinary intergral.

2 Riemann Sum

Theorem 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Then $f \in \mathcal{R}([a, b])$ if and only if there exists $A \in \mathbb{R}$ such that for all $\epsilon>0$, there exists $\delta>0$ such that for all partitions $P:=\left\{x_{i}\right\}_{i=0}^{k} \subset[a, b]$ with $\|P\|:=\max _{i=1}^{k}\left|x_{i}-x_{i-1}\right|<\delta$ and for all tags $\left(\xi_{i}\right)_{i=1}^{k}$, that is, $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$, we have

$$
\left|\sum_{i=1}^{k} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)-A\right|<\epsilon
$$

In that case, we in fact have $A=\int_{a}^{b} f$. We denote $R\left(f, P,\left\{\xi_{i}\right\}\right):=\sum_{i=1}^{k} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)$ the Riemann sum with respect to the partition P and tags $\left\{x_{i}\right\}$.

Quick Practice

1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable. Using Riemann sums, show that $F(a)-F(b)=\int_{b}^{a} F^{\prime}$.
2. Show using Riemann sums that $\left|\int_{a}^{b} f\right| \leq M(b-a)$ if $f \in \mathcal{R}([a, b])$ and $|f| \leq M$ for $M>0$.
3. Evaluate the following limits
(a) $\lim _{n} \sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}$
(b) $\lim _{n} \frac{1}{n}\left(\sin \left(\frac{\pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)+\cdots+\sin (\pi)\right)$
(c) $\lim _{n}\left(\frac{n+1}{n^{2}}+\frac{n+2}{n^{2}}+\cdots+\frac{2 n}{n^{2}}\right)$
4. Show that $\int_{0}^{1} x^{2}=1 / 3$ by considering Riemann sums.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be decreasing. Show that for all $N>1 \in \mathbb{N}$, we have

$$
\int_{1}^{N+1} f \leq \sum_{k=1}^{N} f(k) \leq \int_{0}^{N} f
$$

6. Show that for all $n>2 \in \mathbb{N}$, we have

$$
n \sum_{k=n}^{\infty} \frac{1}{k^{2}} \leq 2
$$

