1 (2021 Home Test 1 Q1). Let $f(x)=\operatorname{sgn}\left(\sin \frac{\pi}{x}\right)$ for $x \neq 0$ and $f(0)=0$, where $\operatorname{sgn}$ denotes the sign function. Show that $f$ is Riemann integrable over $[-1,1]$ and find $\int_{-1}^{1} f(x) d x$.

Solution. Note it is not hard to see that $f$ is an odd function over $[-1,1]$, that is, $f(-x)=-f(x)$ for all $x \in[-1,1]$. Therefore for all partition $P \subset[0,1]$, considering $-P \subset[-1,0]$ to be a partition over the other interval, we have that $U(f, P)=-L(f,-P)$ and $L(f, P)=U(f,-P)$. It is also not hard to see that there is a one-to-one correspondence between partitions over $[0,1]$ and $[-1,0]$ respecting refinements of partitions. Therefore, we have $\bar{\int}_{0}^{1} f=-\int_{-1}^{0} f$ and $\int_{0}^{1} f=-\bar{\int}_{-1}^{0} f$ by taking limit of nets. Hence it clearly suffices to show that the restriction $\left.f\right|_{[0,1]}$ is Riemann integrable.

To this end, observe that $f(x)=0$ on $[0,1]$ if and only if $x=0$ or $x=1 / n$ for some $n \in \mathbb{N}$. In addition, $f$ is constant on the open intervals $(1 /(n+1), 1 / n)$ for all $n \in \mathbb{N}$. Let $\left(\epsilon_{n}\right)$ be a sequence of real numbers such that $0<\epsilon_{n}<1 / 2 n$ and $\epsilon_{n}<1 / n^{2}$ for all $n \in \mathbb{N}$. Then we consider for all $n \in \mathbb{N}$ the partitions

$$
P_{n}:=\left\{0, \frac{1}{n}-\epsilon_{n}, \frac{1}{n}+\epsilon_{n}, \cdots, \frac{1}{2}-\epsilon_{n} \frac{1}{2}+\epsilon_{n}, 1-\epsilon_{n}, 1\right\}=:\left\{x_{i}\right\}_{i=1}^{k}
$$

The choice of $\left(\epsilon_{n}\right)$ makes the elements in $P_{n}$ increase strictly from left to right as written above. It is not hard to see that $f$ is constant on the intervals $\left[x_{i-1}, x_{i}\right]$ except for $\left[0, \frac{1}{n}-\epsilon_{n}\right],\left[1-\epsilon_{n}, 1\right]$ and $\left[\frac{1}{p}-\epsilon_{n}, \frac{1}{p}+\epsilon_{n}\right]$ where $1<p<n$. Hence, we have

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \leq \sum_{i=1}^{n} \operatorname{diam}\left(f\left[\frac{1}{i}-\epsilon_{n}, \frac{1}{i}+\epsilon_{n}\right]\right) 2 \epsilon_{i} \leq \sum_{i=1}^{n} 4 \epsilon_{n} \leq 4 n \epsilon_{n} \leq 4 n / n^{2}=4 / n
$$

for all $n \in \mathbb{N}$. It is not hard to see that this implies $f \in \mathcal{R}([0,1])$. By the remark on the first paragraph, it follows that $f \in \mathcal{R}([-1,0])$ and so $f \in \mathcal{R}([-1,1])$. In addition. we have $\int_{0}^{1} f=-\int_{1}^{0} f$ from the first paragraph as $f$ is odd. Therefore $\int_{-1}^{1} f=\int_{-1}^{0} f+\int_{0}^{1} f=0$.
Remark. In fact one can observe that for all $\epsilon>0$ we have $f \in \mathcal{R}([-1,-\epsilon])$ and $f \in \mathcal{R}([1, \epsilon])$ since functions with finitely many continuity are Riemann integrable. This gives another way to show that $f$ is integrable.

2 (2021 Home Test 1 Q2). Let $f$ be a continuous real-valued function defined on $\mathbb{R}$.
(a) Suppose that there are constants $c_{0}$ and $c_{1}$ such that

$$
\lim _{x \rightarrow 0} \frac{f(x)-c_{0}-c_{1} x}{x}=0
$$

Show that $f^{\prime}(0)$ exists.
(b) Suppose that $f$ is a $C^{1}$-function and there are constants $c_{0}, c_{1}$ and $c_{2}$ such that

$$
\lim _{x \rightarrow 0} \frac{f(x)-c_{0}-c_{1} x-c_{2} x^{2}}{x^{2}}=0
$$

Does it imply that the second derivative of $f$ at 0 exist? Prove your assertion.

## Solution.

a. Write $g(x):=\frac{f(x)-c_{0}-c_{1} x}{x}$ for $x \neq 0$. Then for $x \neq 0$, we have $x g(x)=f(x)-c_{0}-c_{1} x$. This implies $f(0)=c_{0}$ as $f$ is continuous. It is then not hard to see that $g(x)+c_{1}=\frac{f(x)-f(0)}{x}$ for $x \neq 0$ and so $f^{\prime}(0)=c_{1}$. It particular, $f^{\prime}(0)$ exists.
b. No. Consider $c_{0}=c_{1}=c_{2}=0$ and consider $f(x)=x^{3} \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Then $f^{\prime}(x)=$ $3 x^{2} \sin (1 / x)-x \cos \left(1 / x^{2}\right)$ for $x \neq 0$ and $f^{\prime}(0)=0$. Note that $f^{\prime}$ is continuous as $\lim _{x \rightarrow 0} f^{\prime}(x)=0$. Nonetheless, $f^{\prime}(x)$ does not have derivative at 0 .

Remark. It is incorrect to use L'Hospital Rule on the limit of part (b) so that the result on part (a) could be used.

3 (2021 Home Test 1 Q3). Let $f:(0,1) \rightarrow \mathbb{R}$ be a function given by

$$
f(x)= \begin{cases}\frac{1}{p} & \text { if } x=\frac{q}{p} \text { and } p, q \text { are relatively prime positive integers; } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

a) Describe the continuity of $f$.
b) Describe the differentiability of $f$.

Justify your answer by using the definitions.

## Solution.

a. This was come across in 2058: $f$ is continuous precisely at the irrationals.
b. Since $f$ is only continuous at irrationals, it suffices to consider differentiability at the irrationals. We proceed to claim that $f$ is no-where differentiable. Suppose not. Then $f$ is differentiable at some irrational $c$. By approaching $c$ with irrationals, then it must be the case that $f^{\prime}(c):=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=0$. It suffices to show that $f^{\prime}(c)$ cannot be 0 . In particular, we show that there exists a sequence of rational numbers $\left(x_{n}\right)$ such that $x_{n} \rightarrow c$ but $\left|\frac{f\left(x_{n}\right)}{x_{n}-c}\right| \geq 1$. Enumerate the prime numbers $\left(p_{n}\right)$. We want to find that for large enough $n$, there exists $0<q_{n}<p_{n}$ with $q_{n} \in \mathbb{N}$ such that $\left|x_{n}-c\right|<1 / p_{n}$. This would then imply eventually, we have $\left|\frac{f\left(x_{n}\right)}{x_{n}-c}\right| \geq 1$. To this end, we consider the (unsolved) inequality

$$
\begin{aligned}
& \left|x_{n}-c\right|<\frac{1}{p_{n}} \\
\Longleftrightarrow & \left|\frac{q_{n}}{p_{n}}-c\right|<\frac{1}{p_{n}} \\
\Longleftrightarrow & -1+c p_{n}<q_{n}<1+c p_{n}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Note that by the unboundedness of $\left(p_{n}\right)$, or the existence of infinitely many primes, it is clear that there exists $N \in \mathbb{N}$ such that $-1+c p_{n}>0$ and $1+c p_{n}<p_{n}$ for all $n \geq N$. Also with $n \geq N$, we have $\left(-1+c p_{n}, 1+c p_{n}\right) \subset\left(0, p_{n}\right) \subset(0, \infty)$ to be of length 2 and so must contain some $q_{n} \in \mathbb{N}$. Therefore, we have solved the required inequality for large enough $N$. It follows there exists a sequence of rational numbers $\left(x_{n}\right)$ in $(0,1)$ such that $\left|\frac{f\left(x_{n}\right)}{x_{n}-c}\right| \geq 1$ for large enough $n$. This implies clearly that $f^{\prime}(c) \neq 0$ which is a contradiction.

Remark. In a sense, the solution to $3(\mathrm{~b})$ is natural because first it is natural to consider rationals with prime denominators to simplify the question; and secondly the $\left(x_{n}\right)$ we consider is basically just the solution to the desired inequality $\left|\frac{f\left(x_{n}\right)}{x_{n}-c}\right| \geq 1$. It is a standard technique in analysis to identify inequalities that we want and then solve them (in an $\epsilon-\delta$ argument, we identify the $\epsilon$-inequality that we want and try to solve for a $\delta$ ).

4 (Motivated from 1920 Home Test 1 Q2). Recall that a function $s:[0,1] \rightarrow \mathbb{R}$ is a step function over $[0,1]$ if there exists a partition $P:=\left\{x_{i}\right\}_{i=0}^{k} \subset[0,1]$ such that $s$ is constant over $\left(x_{i-1}, x_{i}\right)$.
(a) Let $f \in \mathcal{R}([0,1])$. Show that there exists a sequence of step functions $\left(s_{n}\right)$ over $[0,1]$ such that $s_{n} \leq s_{n+1}$ pointwise for all $n \in \mathbb{N}$ and $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$.
(b) Let $f \in \mathcal{C}([0,1])$, that is $f$ is continuous. Show that there exists a sequence of step functions ( $s_{n}$ ) uniformly approximating $f$, that is, $\lim _{n} \sup _{x \in[0,1]}\left|s_{n}(x)-f(x)\right|=0$. Hence, show that the sequence also satisfies $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$.
(c) Suppose $f \in \mathcal{R}([0,1])$. Is it always true that $f$ is uniformly approximated by step functions, that is, can the assumption in (b) be relaxed to only integrable functions?

Solution. We begin with a general observation that every lower (and upper) sum corresponds to an intergral of step function. Let $P:=\left\{x_{i}\right\}_{i=1}^{k}$ be a partition over $[0,1]$. Then $L(f, P)=\sum_{i=1}^{k} m_{i}(f, P)\left(x_{i-1}, x_{i}\right)$. Now we define a step function $s_{P}$ by $s_{P} \equiv m_{i}(f, P)$ on $\left(x_{i-1}, x_{i}\right)$. Note that there is a unique way of defining $s_{P}$ on the end-points $P \subset[0,1]$ such that $s_{P}$ is right-continuous on $[0,1)$ and left-continuous at 1 . We define $s_{P}$ on the end-points according to that. Then it is clear that by splitting domains (or by Lecture Theorems), we have $\int_{0}^{1} s_{P}=L(f, P)$. Furthermore, it is not hard it see that for a refinement $Q \supset P$, we have $s_{Q} \geq s_{P}$ point-wise everywhere. Now we proceed to do the questions:
a. Let $\left(\epsilon_{n}\right)$ be a sequence of decreasing positive number such that $\epsilon_{n} \downarrow 0$. By considering lower integral, there exists a sequence of partitions $\left(P_{n}\right)$ such that $\int_{0}^{1} f-\epsilon_{n}<L\left(f, P_{n}\right)$. Now define $Q_{n}:=\bigcup_{i=1}^{n} P_{i}$. Then it is not hard to see that $\left(Q_{n}\right)$ is increasing with respect to refinements and we have $\int_{0}^{1} f-\epsilon_{n}<L\left(f, Q_{n}\right)$. Therefore the step functions defined by $s_{n}:=s_{Q_{n}}$ according to the way stated in the beginning is point-wise increasing. Furthermore we have $\int_{0}^{1} f-\epsilon_{n}<\int_{0}^{1} s_{n}=L\left(f, Q_{n}\right)$. This clearly implies that $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$ as $n \rightarrow \infty$.
b. Let $\left(\epsilon_{n}\right)$ be a sequence of decreasing positive number such that $\epsilon_{n} \downarrow 0$. By compactness, $f$ is uniformly continuous. Hence, there exists $\delta_{n}>0$ such that $|f(x)-f(y)|<\epsilon_{n}$ when $|x-y|<\delta_{n}$ for all $n \in \mathbb{N}$. For all $n \in \mathbb{N}$ choose a partition $P_{n}:=\left\{x_{i}^{n}\right\}_{i=1}^{k} \subset[0,1]$ such that $\max _{i=1}^{k}\left|x_{i}^{n}-x_{i-1}^{n}\right|<\delta_{n}$. Define $s_{n}$ to be some step function such that $s_{n}$ is right continuous on $[0,1)$ and left continuous at 1 such that $s_{n} \equiv c_{i, n}$ on $\left(x_{i-1}^{n}, x_{i}^{n}\right)$ for some $c_{i, n} \in\left(x_{i-1}^{n}, x_{i}^{n}\right)$. It follows clearly that $\sup _{x \in[0,1]}\left|s_{n}(x)-f(x)\right| \leq \epsilon_{n}$ for all $n \in \mathbb{N}$. Hence, $\left(s_{n}\right)$ approximates $f$ uniformly.

Next we show that $\int_{0}^{1} s_{n} \rightarrow \int_{0}^{1} f$. This follows because we have for all $n \in \mathbb{N}$ that

$$
\left|\int_{0}^{1} s_{n}-\int_{0}^{1} f\right|=\left|\int_{0}^{1}\left(s_{n}-f\right)\right| \leq \int_{0}^{1}\left|s_{n}-f\right| \leq \sup _{x \in[0,1]}\left|s_{n}(x)-f(x)\right|
$$

c. No. We claim that that the indicator function $f:=\mathbb{1}_{\left\{\frac{1}{n}: n \in \mathbb{N}\right\}}$ cannot be uniformly approximated by step functions. Suppose not. Then there exists a step function $s:=\sum_{i=1}^{k} c_{i} \mathbb{1}_{\left(x_{i}, x_{1-i}\right)}$ where $c_{i} \in \mathbb{R}$ and $\left\{x_{i}\right\} \subset P$ is a partition such that $\sup _{x \in[0,1]}|f(x)-s(x)|<\frac{1}{3}$. It follows that $|f(x)-s(x)| \leq \frac{1}{3}$ for all $x \in\left(0=: x_{0}, x_{1}\right)$. In other words, we have $\left|c_{1}-f(x)\right| \leq \frac{1}{3}$ for all $x \in\left(0, x_{1}\right)$. Nonetheless, note that $f$ attains both 0 and 1 infinitely over $\left(0, x_{1}\right)$. Therefore contradiction arises as it cannot happen at the same time that $\left|c_{1}\right| \leq \frac{1}{3}$ and $\left|c_{1}-1\right| \leq \frac{1}{3}$ by the triangle inequality.

