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1 (2021 Home Test 1 Q1). Let f(x) = sgn(sin π
x ) for x ̸= 0 and f(0) = 0, where sgn denotes the sign function.

Show that f is Riemann integrable over [−1, 1] and find
∫ 1

−1
f(x)dx.

Solution. Note it is not hard to see that f is an odd function over [−1, 1], that is, f(−x) = −f(x) for all
x ∈ [−1, 1]. Therefore for all partition P ⊂ [0, 1], considering −P ⊂ [−1, 0] to be a partition over the other
interval, we have that U(f, P ) = −L(f,−P ) and L(f, P ) = U(f,−P ). It is also not hard to see that there
is a one-to-one correspondence between partitions over [0, 1] and [−1, 0] respecting refinements of partitions.

Therefore, we have
∫ 1

0
f = −

∫ 0

−1
f and

∫ 1

0
f = −

∫ 0

−1
f by taking limit of nets. Hence it clearly suffices to

show that the restriction f |[0,1] is Riemann integrable.

To this end, observe that f(x) = 0 on [0, 1] if and only if x = 0 or x = 1/n for some n ∈ N. In addition, f is
constant on the open intervals (1/(n+1), 1/n) for all n ∈ N. Let (ϵn) be a sequence of real numbers such that
0 < ϵn < 1/2n and ϵn < 1/n2 for all n ∈ N. Then we consider for all n ∈ N the partitions

Pn := {0, 1
n
− ϵn,

1

n
+ ϵn, · · · ,

1

2
− ϵn

1

2
+ ϵn, 1− ϵn, 1} =: {xi}ki=1

The choice of (ϵn) makes the elements in Pn increase strictly from left to right as written above. It is not hard
to see that f is constant on the intervals [xi−1, xi] except for [0,

1
n − ϵn], [1− ϵn, 1] and [ 1p − ϵn,

1
p + ϵn] where

1 < p < n. Hence, we have

U(f, Pn)− L(f, Pn) ≤
n∑

i=1

diam(f [
1

i
− ϵn,

1

i
+ ϵn])2ϵi ≤

n∑
i=1

4ϵn ≤ 4nϵn ≤ 4n/n2 = 4/n

for all n ∈ N. It is not hard to see that this implies f ∈ R([0, 1]). By the remark on the first paragraph, it

follows that f ∈ R([−1, 0]) and so f ∈ R([−1, 1]). In addition. we have
∫ 1

0
f = −

∫ 0

1
f from the first paragraph

as f is odd. Therefore
∫ 1

−1
f =

∫ 0

−1
f +

∫ 1

0
f = 0.

Remark. In fact one can observe that for all ϵ > 0 we have f ∈ R([−1,−ϵ]) and f ∈ R([1, ϵ]) since functions
with finitely many continuity are Riemann integrable. This gives another way to show that f is integrable.

2 (2021 Home Test 1 Q2). Let f be a continuous real-valued function defined on R.

(a) Suppose that there are constants c0 and c1 such that

lim
x→0

f(x)− c0 − c1x

x
= 0.

Show that f ′(0) exists.

(b) Suppose that f is a C1-function and there are constants c0, c1 and c2 such that

lim
x→0

f(x)− c0 − c1x− c2x
2

x2
= 0.

Does it imply that the second derivative of f at 0 exist? Prove your assertion.

Solution.

a. Write g(x) := f(x)−c0−c1x
x for x ̸= 0. Then for x ̸= 0, we have xg(x) = f(x) − c0 − c1x. This implies

f(0) = c0 as f is continuous. It is then not hard to see that g(x) + c1 = f(x)−f(0)
x for x ̸= 0 and so

f ′(0) = c1. It particular, f
′(0) exists.

b. No. Consider c0 = c1 = c2 = 0 and consider f(x) = x3 sin(1/x) for x ̸= 0 and f(0) = 0. Then f ′(x) =
3x2 sin(1/x) − x cos

(
1/x2

)
for x ̸= 0 and f ′(0) = 0. Note that f ′ is continuous as limx→0 f

′(x) = 0.
Nonetheless, f ′(x) does not have derivative at 0.

Remark. It is incorrect to use L’Hospital Rule on the limit of part (b) so that the result on part (a) could be
used.
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3 (2021 Home Test 1 Q3). Let f : (0, 1) → R be a function given by

f(x) =

{
1
p if x = q

p and p, q are relatively prime positive integers;

0 if x is irrational.

Describe the continuity of f .a) Describe the differentiability of f .b)

Justify your answer by using the definitions.

Solution.

a. This was come across in 2058: f is continuous precisely at the irrationals.

b. Since f is only continuous at irrationals, it suffices to consider differentiability at the irrationals. We proceed
to claim that f is no-where differentiable. Suppose not. Then f is differentiable at some irrational c. By

approaching c with irrationals, then it must be the case that f ′(c) := limx→c
f(x)−f(c)

x−c = 0. It suffices
to show that f ′(c) cannot be 0. In particular, we show that there exists a sequence of rational numbers

(xn) such that xn → c but
∣∣∣ f(xn)
xn−c

∣∣∣ ≥ 1. Enumerate the prime numbers (pn). We want to find that for

large enough n, there exists 0 < qn < pn with qn ∈ N such that |xn − c| < 1/pn. This would then imply

eventually, we have
∣∣∣ f(xn)
xn−c

∣∣∣ ≥ 1. To this end, we consider the (unsolved) inequality

|xn − c| < 1

pn

⇐⇒
∣∣∣∣ qnpn − c

∣∣∣∣ < 1

pn

⇐⇒− 1 + cpn < qn < 1 + cpn

for all n ∈ N. Note that by the unboundedness of (pn), or the existence of infinitely many primes, it is clear
that there exists N ∈ N such that −1 + cpn > 0 and 1 + cpn < pn for all n ≥ N . Also with n ≥ N , we
have (−1 + cpn, 1 + cpn) ⊂ (0, pn) ⊂ (0,∞) to be of length 2 and so must contain some qn ∈ N. Therefore,
we have solved the required inequality for large enough N . It follows there exists a sequence of rational

numbers (xn) in (0, 1) such that
∣∣∣ f(xn)
xn−c

∣∣∣ ≥ 1 for large enough n. This implies clearly that f ′(c) ̸= 0 which

is a contradiction.

Remark. In a sense, the solution to 3(b) is natural because first it is natural to consider rationals with prime
denominators to simplify the question; and secondly the (xn) we consider is basically just the solution to the

desired inequality
∣∣∣ f(xn)
xn−c

∣∣∣ ≥ 1. It is a standard technique in analysis to identify inequalities that we want and

then solve them (in an ϵ− δ argument, we identify the ϵ−inequality that we want and try to solve for a δ).
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4 (Motivated from 1920 Home Test 1 Q2). Recall that a function s : [0, 1] → R is a step function over [0, 1] if
there exists a partition P := {xi}ki=0 ⊂ [0, 1] such that s is constant over (xi−1, xi).

(a) Let f ∈ R([0, 1]). Show that there exists a sequence of step functions (sn) over [0, 1] such that sn ≤ sn+1

pointwise for all n ∈ N and limn

∫ 1

0
sn =

∫ 1

0
f .

(b) Let f ∈ C([0, 1]), that is f is continuous. Show that there exists a sequence of step functions (sn) uniformly
approximating f , that is, limn supx∈[0,1] |sn(x)− f(x)| = 0. Hence, show that the sequence also satisfies

limn

∫ 1

0
sn =

∫ 1

0
f .

(c) Suppose f ∈ R([0, 1]). Is it always true that f is uniformly approximated by step functions, that is, can
the assumption in (b) be relaxed to only integrable functions?

Solution. We begin with a general observation that every lower (and upper) sum corresponds to an intergral

of step function. Let P := {xi}ki=1 be a partition over [0, 1]. Then L(f, P ) =
∑k

i=1 mi(f, P )(xi−1, xi). Now
we define a step function sP by sP ≡ mi(f, P ) on (xi−1, xi). Note that there is a unique way of defining sP
on the end-points P ⊂ [0, 1] such that sP is right-continuous on [0, 1) and left-continuous at 1. We define sP
on the end-points according to that. Then it is clear that by splitting domains (or by Lecture Theorems),

we have
∫ 1

0
sP = L(f, P ). Furthermore, it is not hard it see that for a refinement Q ⊃ P , we have sQ ≥ sP

point-wise everywhere. Now we proceed to do the questions:

a. Let (ϵn) be a sequence of decreasing positive number such that ϵn ↓ 0. By considering lower integral, there

exists a sequence of partitions (Pn) such that
∫ 1

0
f − ϵn < L(f, Pn). Now define Qn :=

⋃n
i=1 Pi. Then it

is not hard to see that (Qn) is increasing with respect to refinements and we have
∫ 1

0
f − ϵn < L(f,Qn).

Therefore the step functions defined by sn := sQn according to the way stated in the beginning is point-wise

increasing. Furthermore we have
∫ 1

0
f − ϵn <

∫ 1

0
sn = L(f,Qn). This clearly implies that limn

∫ 1

0
sn =

∫ 1

0
f

as n → ∞.

b. Let (ϵn) be a sequence of decreasing positive number such that ϵn ↓ 0. By compactness, f is uniformly
continuous. Hence, there exists δn > 0 such that |f(x)− f(y)| < ϵn when |x− y| < δn for all n ∈ N. For
all n ∈ N choose a partition Pn := {xn

i }ki=1 ⊂ [0, 1] such that maxki=1

∣∣xn
i − xn

i−1

∣∣ < δn. Define sn to be
some step function such that sn is right continuous on [0, 1) and left continuous at 1 such that sn ≡ ci,n
on (xn

i−1, x
n
i ) for some ci,n ∈ (xn

i−1, x
n
i ). It follows clearly that supx∈[0,1] |sn(x)− f(x)| ≤ ϵn for all n ∈ N.

Hence, (sn) approximates f uniformly.

Next we show that
∫ 1

0
sn →

∫ 1

0
f . This follows because we have for all n ∈ N that∣∣∣∣∫ 1

0

sn −
∫ 1

0

f

∣∣∣∣ = ∣∣∣∣∫ 1

0

(sn − f)

∣∣∣∣ ≤ ∫ 1

0

|sn − f | ≤ sup
x∈[0,1]

|sn(x)− f(x)|

c. No. We claim that that the indicator function f := 1{ 1
n :n∈N} cannot be uniformly approximated by step

functions. Suppose not. Then there exists a step function s :=
∑k

i=1 ci1(xi,x1−i) where ci ∈ R and {xi} ⊂ P

is a partition such that supx∈[0,1] |f(x)− s(x)| < 1
3 . It follows that |f(x)− s(x)| ≤ 1

3 for all x ∈ (0 =: x0, x1).

In other words, we have |c1 − f(x)| ≤ 1
3 for all x ∈ (0, x1). Nonetheless, note that f attains both 0 and 1

infinitely over (0, x1). Therefore contradiction arises as it cannot happen at the same time that |c1| ≤ 1
3

and |c1 − 1| ≤ 1
3 by the triangle inequality.
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