1 (2021 Home Test 1 Q1). Let $f(x)=\operatorname{sgn}\left(\sin \frac{\pi}{x}\right)$ for $x \neq 0$ and $f(0)=0$, where sgn denotes the sign function. Show that f is Riemann integrable over $[-1,1]$ and find $\int_{-1}^{1} f(x) d x$.

2 (2021 Home Test 1 Q2). Let f be a continuous real-valued function defined on \mathbb{R}.
(a) Suppose that there are constants c_{0} and c_{1} such that

$$
\lim _{x \rightarrow 0} \frac{f(x)-c_{0}-c_{1} x}{x}=0
$$

Show that $f^{\prime}(0)$ exists.
(b) Suppose that f is a C^{1}-function and there are constants c_{0}, c_{1} and c_{2} such that

$$
\lim _{x \rightarrow 0} \frac{f(x)-c_{0}-c_{1} x-c_{2} x^{2}}{x^{2}}=0
$$

Does it imply that the second derivative of f at 0 exist? Prove your assertion.

3 (2021 Home Test 1 Q3). Let $f:(0,1) \rightarrow \mathbb{R}$ be a function given by

$$
f(x)= \begin{cases}\frac{1}{p} & \text { if } x=\frac{q}{p} \text { and } p, q \text { are relatively prime positive integers; } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

a) Describe the continuity of f.
b) Describe the differentiability of f.

Justify your answer by using the definitions.

4 (Motivated from 1920 Home Test 1 Q2). Recall that a function $s:[0,1] \rightarrow \mathbb{R}$ is a step function over [0, 1] if there exists a partition $P:=\left\{x_{i}\right\}_{i=0}^{k} \subset[0,1]$ such that s is constant over $\left(x_{i-1}, x_{i}\right)$.
(a) Let $f \in \mathcal{R}([0,1])$. Show that there exists a sequence of step functions $\left(s_{n}\right)$ over $[0,1]$ such that $s_{n} \leq s_{n+1}$ pointwise for all $n \in \mathbb{N}$ and $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$.
(b) Let $f \in \mathcal{C}([0,1])$, that is f is continuous. Show that there exists a sequence of step functions (s_{n}) uniformly approximating f, that is, $\lim _{n} \sup _{x \in[0,1]}\left|s_{n}(x)-f(x)\right|=0$. Hence, show that the sequence also satisfies $\lim _{n} \int_{0}^{1} s_{n}=\int_{0}^{1} f$.
(c) Suppose $f \in \mathcal{R}([0,1])$. Is it always true that f is uniformly approximated by step functions, that is, can the assumption in (b) be relaxed to only integrable functions?

