Unless otherwise specified, if we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 Basic Results on Riemann Integrability

Definition 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Then we say that f is (Riemann) integrable, or $f \in \mathcal{R}([a, b])$ if $\bar{\int}_{a}^{b} f=\int_{a}^{b} f$. Equivalently, for all $\epsilon>0$, there exists a partition $P \subset[a, b]$ such that

$$
U(f, P)-L(f, P)=\sum_{i=1}^{k} \omega_{i}(f, P)\left(x_{i}-x_{i-1}\right)<\epsilon
$$

where $\omega_{i}(f, P):=\operatorname{diam} f\left(\left[x_{i-1}, x_{i}\right]\right):=\sup _{x, y \in\left[x_{i-1}, x_{i}\right]}|f(x)-f(y)|$. In such case, write $\int_{a}^{b} f:=\bar{\int}_{a}^{b} f=\underline{\int}_{a}^{b} f$.

Conceptual Quick Practice

1. Let $f, g \in \mathcal{R}([a, b])$ and $\alpha \in \mathbb{R}$.
(a) Show that $f+g \in \mathcal{R}([a, b])$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$
(b) Show that $\alpha f \in \mathcal{R}([a, b])$ and $\int_{a}^{b} \alpha f=\alpha \int_{a}^{b} f$
(c) If $f \leq g$ pointwise, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
2. Let $f \in \mathcal{R}([a, b])$.
(a) Show that $f^{2} \in \mathcal{R}([a, b])$
(b) Show that $f g \in \mathcal{R}([a, b])$ for all $g \in \mathcal{R}([a, b])$.
3. Let $f \in \mathcal{R}([a, b])$.
(a) Suppose $g:[a, b] \rightarrow \mathbb{R}$ is a function such that $f=g$ for at most finitely many points. Show that $g \in \mathcal{R}([a, b])$.
(b) Is the above true if "finitely many points" is replaced by "countably many points"?
4. Let $f \in \mathcal{R}([a, b])$ be bounded. Let $g: I \rightarrow \mathbb{R}$ be a function such that $f([a, b]) \subset I$ where I is some interval.
(a) Show that $g \circ f \in \mathcal{R}([a, b])$ if g is Lipschitz continuous.
(b) Is the above true if g is only continuous?
5. Show that $C([a, b])$, the space of continuous functions, is a vector subspace of $\mathcal{R}([a, b])$.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Let $c \in(a, b)$.
(a) Show that $f \in \mathcal{R}[a, b]$ if and only if the restrictions are integrable, that is, we have both $\left.f\right|_{[a, c]} \in$ $\mathcal{R}([a, c])$ and $\left.f\right|_{[c, b]} \in \mathcal{R}([c, b])$
(b) Let $A \subset[a, b]$. Then we define $\mathbb{1}_{A}(x):=1$ if $x \in A$ and zeros elsewhere. We call this the indicator function of A. A function f is said to be a step function if there exists a mutually disjoint finite collection of intervals $\left\{I_{i}\right\}_{i=1}^{k}$ such that f is a linear combination of $\left\{\mathbb{1}_{I_{i}}\right\}_{i=1}^{k}$, that is, $f=\sum_{i=1}^{k} a_{i} \mathbb{1}_{I_{i}}$ for some $\left\{a_{i}\right\}_{i=1}^{k} \subset \mathbb{R}$. Show that every step function is Riemann integrable.
7. Let $f(x):=\sin (1 / x)$ for $x \in(0,1]$ and $f(0):=0$. Show that $f \in \mathcal{R}([0,1])$.
8. This exercise provides an example showing the compositions of Riemann integrable functions may not be Riemann integrable.
(a) Define $f(x):=\mathbb{1}_{\{1 / n: n \in \mathbb{N}\}}(x):=\left\{\begin{array}{ll}1 & x=1 / n, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{array}\right.$ for all $x \in[0,1]$. Show that $f \in \mathcal{R}([0,1])$
(b) Define $g(x):=\left\{\begin{array}{ll}1 / n & x=m / n, \operatorname{gcd}(m, n)=1 \\ 0 & x \notin \mathbb{Q}\end{array}\right.$ for all $x \in[0,1]$, that is g is the Thomae's function. Show that $g \in \mathcal{R}([0,1])$.
(c) Show that composition of Riemann integrable functions may not be Riemann integrable.
9. (Very challenging) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
(a) Suppose f is continuous except for finitely many points. Show that $f \in \mathcal{R}([a, b])$.
(b) Suppose f is continuous except for countably many points. Show that $f \in \mathcal{R}([a, b])$.
(c) Let $A \subset \mathbb{R}$. We say the A is of Lebesgue measure zero if for all $\epsilon>0$, there exists a countable open interval cover $\left\{I_{i}\right\}_{i=1}^{\infty}$ such that $A \subset \bigcup I_{i}$ such that $\sum_{i=1}^{\infty} \ell\left(I_{i}\right)<\epsilon$ where $\ell\left(I_{i}\right):=b_{i}-a_{i}$ if $I_{i}=\left(a_{i}, b_{i}\right)$.
i. Show that every non-degenerate (non-empty and non-singleton) interval is not of Lebesgue measure zero.
ii. Show that every singleton is of Lebesgue measure zero.
iii. Show that if $A_{1}, A_{2} \subset A$ is of Lebesgue measure zero, then $A_{1} \cup A_{2}$ is of Lebesgue measure zero.
(Hint: Consider singletons first for intuition.)
iv. Show that if $\left(A_{n}\right)$ is a sequence of Lebesgue measure zero sets, then $\bigcup_{n} A_{n}$ is of Lebesgue measure zero.
(Hint: Consider singletons first for intuition.)
v. Show that if the point of discontinuity of $f:[a, b] \rightarrow \mathbb{R}$ is of Lebesgue measure zero, then $f \in \mathcal{R}([a, b])$
