Unless otherwise specified, if we write (a, b) or [a, b], it is always the case that $a < b \in \mathbb{R}$.

1 Introduction to Darboux Integration

Definition 1.1. Let [a, b] be a bounded interval. Then

- i. We call $P \subset [a, b]$ a **partition** if it is a finite set containing a, b. In particular we can write $P = \{x_i\}_{i=0}^k$ as a finite list where $x_0 = a, x_k = b$ and $x_0 < x_1 \cdots < x_k$. The collection of partitions on [a, b] can be denoted by $\mathcal{P}_{[a,b]}$, or just \mathcal{P} in this note for convenience.
- ii. For $P, Q \in \mathcal{P}_{[a,b]}$, we say that Q is a <u>refinement</u> of P if $P \subset Q$. We also write $P \preceq Q$ if Q refines P. Note that the pair $(\mathcal{P}_{[a,b]}, \preceq)$ forms a partially ordered set.

Definition 1.2. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Let $P:=\{x_i\}_{i=0}^k \subset [a,b]$ be a partition. Then

- i. We denote $U(f, P) := \sum_{i=1}^{k} \sup_{x \in [x_{i-1}, x_i]} f(x)(x_i x_{i-1})$ the upper sum of f over P.
- ii. We denote $L(f, P) := \sum_{i=1}^{k} \inf_{x \in [x_{i-1}, x_i]} f(x)(x_i x_{i-1})$ the lower sum of f over P
- iii. We denote $\overline{\int}_a^b f := \inf_{P \in \mathcal{P}_{[a,b]}} U(f,P)$ and $\underline{\int}_a^b f := \sup_{P \in \mathcal{P}_{[a,b]}} L(f,P)$ the upper and lower integral of f over [a,b] respectively. It is not hard to see that they are well-defined since f is bounded.

Conceptual Quick Practice

- 1. Let (X, \preceq) be a partially ordered set. We say that X is a <u>directed set</u> if every pair of element has an upper bound, that is, for all $x, y \in X$, there exists $z \in X$ such that $z \succeq x$ and $z \succeq y$.
 - (a) Show that every totally ordered set is a directed set. Hence \mathbb{N} with the usual order is a directed set.
 - (b) Equip \mathbb{N} with the divisibility order, that is, $n \leq m$ if n is a factor of m. Show that it is a directed partially ordered set that is not totally ordered.
 - (c) (Extremely Important!!!) Consider a compact interval [a, b]. Show that $(\mathcal{P}_{[a,b]}, \preceq)$ with the refinement order is a directed (partially ordered) set.

Solution. (a). In fact every pair of element in a totally ordered set has a maximum. (b). Upper bounds are given by common multiples. (c). Let $P, Q \subset [a, b]$ be partitions. Then $P \cup Q$ is a partition as it is finite and contains a, b. It is clearly a refinement to both P, Q.

- 2. Following Q1, we are defining more general notions for convergence. Let I be a directed set. Then any function $f: I \to \mathbb{R}$ is said to be a <u>net</u> over I. By convention, We write $f_i := f(i)$ for all $i \in I$ and denote the net as $f = (f_i)_{i \in I}$. A net is increasing (or decreasing) if it shares the same property as a function.
 - (a) Show that every sequence can be regarded as a net over \mathbb{N} .
 - (b) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Consider $U_P := U(f, P)$ for all partition $P \in (\mathcal{P}_{[a,b]}, \preceq)$. Show that $(U_P)_{P \in \mathcal{P}}$ is a decreasing net.
 - (c) Following (b), define $L_P := L(f, P)$ for all $P \in \mathcal{P}$. Show that $(L_P)_{P \in \mathcal{P}}$ is an increasing net.

Solution. (a). It follows from the fact that \mathbb{N} is a directed set. (b). It is equivalent to show that $P \subset Q$ would imply $U_P \geq U_Q$ where P, Q are partitions. Consider first the case $Q = P \cup \{x\}$ where $x \notin P$. It clearly follows that $U(f, Q) \leq U(f, P)$. The general result follows from the finiteness of Q. (c) is similar to (b).

- 3. Let I be a directed set. Consider $x := (x_i)_{i \in I}$ a net of real numbers. Then we say that (x_i) converges to some real numbers x if for all $\epsilon > 0$, there exists $\Lambda \in I$ such that for all $i \succeq \Lambda$, we have $|x_i x| < \epsilon$.
 - (a) Let $(x_i)_{i \in I}$ be a net. Suppose x, y are limits of $(x_i)_{i \in I}$. Show that x = y.
 - (b) Part (a) showed that limits of nets are unique if they exist. We can write $\lim_i x_i := x$ if x is the limit of the net $(x_i)_{i \in I}$. Suppose $(x_i), (y_i)$ are convergent nets over I. Show that
 - i. $\lim_{i} (x_i + y_i) = \lim_{i} x_i + \lim_{i} y_i$
 - ii. $\lim_i x_i \leq \lim_i y_i$ if there exists $\Lambda \in I$ such that $x_i \leq y_i$ for all $i \succeq \Lambda$
 - (c) Is it true that a converging net is always bounded (defined by considering a net as a function)? (*Hint: Consider the index set to be the set of all real numbers.*)

Solution. (a). Let $\epsilon > 0$. Then there exists Λ_1, Λ_2 such that we have $|x_i - x| < \epsilon$ if $i \succeq \Lambda_1$ and $|x_i - y| < \epsilon$ if $i \succeq \Lambda_2$. By directedness, there exists $\Lambda \in I$ such that $\Lambda \succeq \Lambda_1, \Lambda_2$. Hence we have $|x - y| \le |x_i - x| + |x_i - y| < 2\epsilon$ by considering some $i \succeq \Lambda$. It follows that x = y as $\epsilon \to 0$. (b.i). Note that $|x_i + y_i - x - y| \le |x_i - x| + |y_i - y|$ where $x := \lim x_i$ and $y := \lim_i y_i$ for all $i \in I$. Let $\epsilon > 0$. Then the proof proceeds as the sequential case. (b.ii). By (i), it suffices to consider the case $x_i = 0$ for all $i \in I$. Suppose $y := \lim y_i < 0$. Then -y > -y/2 > 0. It follows that there exists $\Lambda' \in I$ such that $i \succeq \Lambda'$ would imply $|y_i - y| < -y/2$. This give a contradiction by considering some $i \succeq \Lambda$ and Λ' . (c). Consider the function f(t) := 1/t on $(0, \infty)$. Then it is unbounded but converges as a net. In

fact $\lim_t f(t) = 0.$

4. Let $f : [a,b] \to \mathbb{R}$ be a bounded function. Show that $\lim_P U(f,P) = \overline{\int}_a^b f := \inf_{P \in \mathcal{P}} U(f,P)$ and $\lim_P L(f,P) = \underline{\int}_a^b f := \sup_{P \in \mathcal{P}} L(f,P)$ where convergence in nets is used.

Solution. Use the fact that U(f, P) and L(f, P) are decreasing and increasing nets respectively.

More Quick Practice

- 1. Let $A \subset \mathbb{R}$. We define $\mathbb{1}_A(x) := \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$ for all $x \in \mathbb{R}$ to be the *indicator function* of A.
 - (a) Let $A \subset [0,1]$ be a singleton. Show that $\overline{\int}_0^1 \mathbb{1}_A = \int_0^1 \mathbb{1}_A = 0$
 - (b) Let $A \subset [0,1]$ be a finite set. Show that $\overline{\int}_0^1 \mathbb{1}_A = \underline{\int}_0^1 \mathbb{1}_A = 0$.
 - (c) Let $A \subset [0,1]$ be a countable set. Is it always true that $\overline{\int}_0^1 \mathbbm{1}_A = \int_0^1 \mathbbm{1}_A = 0$?

Solution. (a) follows from (b). (b). Write $A = \{x_i\}_{i=1}^k$. Then $d := \min_{i \neq j} |x_i - x_j| > 0$. Let $\epsilon > 0$. Consider the partition $P = \{0,1\} \cup \{x_i \pm \epsilon d/4k\} \cap [0,1]$. Then it is not hard to see that $0 \leq \overline{\int_0^1} 1_A \leq U(\mathbb{1}_A, P) = \sum_{i=1}^k 2\epsilon d/4k = \epsilon d/2 < \epsilon$. The result follows as $\epsilon \to 0$. (c). No. Consider $A = \mathbb{Q} \cap [0,1]$.

2. Let $f, g: [a, b] \to \mathbb{R}$ be bounded functions. Suppose f = g except for a finitely many points on [a, b]. Show that $\overline{f}_a^b f = \overline{f}_a^b g$. Is it true that $\underline{f}_a^b f = \underline{f}_a^b g$?

Solution. The answer to the question is true. We prove only for the case of upper integrals. Write $L := \overline{\int}_a^b f$. Let $\epsilon > 0$. Then there exists a partition P such that $U(f, P) - L < \epsilon$. Consider a partition Q similar to that in Q1b such that $|U(f, R) - U(g, R)| < \epsilon$ for all refinement R of Q. It follows that $|U(g, T) - L| < 2\epsilon$ for all T refining P, Q. Hence, $\lim_T U(g, T) = \overline{\int}_a^b g = L = \overline{\int}_a^b f$.

- 3. Let $f, g: [a, b] \to \mathbb{R}$ be bounded functions.
 - (a) Show that $U(f+g, P) \leq U(f, P) + U(g, P)$ for all partition $P \in \mathcal{P}_{[a,b]}$.
 - (b) Hence, show that $\overline{\int}_a^b (f+g) \leq \overline{\int}_a^b f + \overline{\int}_a^b g$.
 - (c) Find examples for both the equality and strict inequality case in (b).
 - (d) Is it true that $\int_a^b (f+g) \leq \int_a^b f + \int_a^b g$? If it is false, give a similar inequality that should hold.

Solution. (a) is easy. (b) follows by taking limits of nets in (a) with the help of Q3 in Conceptual Quick Practice. (c). Consider $f = \mathbb{1}_{\mathbb{Q}}$ and g = -f or g = f. (d). No. We should have $\int_{a}^{b} (f+g) \ge \int_{a}^{b} f + \int_{a}^{b} g$

- 4. Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Show that
 - (a) For all $\lambda \ge 0$, we have $\overline{\int}_a^b \lambda f = \lambda \overline{\int}_a^b$; for all $\lambda < 0$, we have $\overline{\int}_a^b \lambda f = \lambda \underline{\int}_a^b f$
 - (b) The function defined by $f \mapsto \overline{\int}_a^b f$ is a convex function over the space of bounded functions, that is, for all $\lambda \in [0,1]$ and $f,g:[a,b] \to \mathbb{R}$ bounded, we have $\overline{\int}_a^b \lambda f + (1-\lambda)g \leq \lambda \overline{\int}_a^b f + (1-\lambda)\overline{\int}_a^b g$

Solution. (a). Consider first the upper or lower sums. (b). This follow from 3(b) and 4(a).

- 5. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.
 - (a) Let $g : [a,b] \to \mathbb{R}$ be bounded such that $g \ge f$ on [a,b] pointwise. Show that $\overline{\int}_a^b g \ge \overline{\int}_a^b f$ and $\int_a^b g \ge \int_a^b f$.
 - (b) Show that we have $\left| \overline{f}_a^b f \right| \le \overline{f}_a^b |f|$. Is it true that we have $\left| \underline{f}_a^b f \right| \le \underline{f}_a^b |f|$?

Solution. (a). Consider first the upper or lower sums. Then take limits of suitable nets. (b). As $-|f| \leq f \leq |f|$, we have $-\overline{\int}_a^b f \leq -\underline{\int}_a^b |f| \stackrel{(*)}{=} \overline{\int}_a^b -|f| \leq \overline{\int}_a^b f \leq \overline{\int}_a^b |f|$, in which we have used scalar multiplication property of upper and lower integrals at (*). The function $f = -\mathbb{1}_{\mathbb{Q}}$ gives a counter-example to the lower integral case.¹

- 6. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Suppose $f \ge 0$ on [a,b].
 - (a) Suppose f is continuous. Show that $f \equiv 0$ on [a, b] if and only if $\int_a^b f = 0$

(b) Can the continuity assumption in (a) be dropped? Provide suitable examples whenver necessary.

Solution. (a). Only (\Leftarrow) is non-trivial. Suppose not. Then f(c) > 0 for some $c \in [a, b]$. Hence f(x) > f(c)/2 > 0 for all $x \in B_r(c) \subset [a, b]$ for some r > 0. It is then not hard to see that $\int_a^b f \ge \int_{x-r}^{x+r} f \ge 2rf(c)/2 > 0$. (b). No. Consider $f = \mathbb{1}_Q$.

7. Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded function. We define upper and lower integrals of f over a compact interval [a, b] by considering the restriction $f \mid_{[a,b]}$. Show that $\overline{\int}_a^b f + \overline{\int}_b^c f = \overline{\int}_a^c f$ for all a < b < c.

Solution. Let P, Q be partitions of [a, b] and [b, c] respectively. Then $P \cup Q$ is a partition of [a, c] and we clearly have $U(f, P) + U(f, Q) = U(f, P \cup Q) \ge \overline{\int_a^c} f$. It follows that $\overline{\int_a^c} f \le \overline{\int_a^b} f + \overline{\int_b^c} f$ by taking limits through P, Q. For the other side, let R be a partition of [a, c]. Then clearly $R \cup \{b\}$ is a refinement that can be broken into partitions on [a, b] and [b, c]. It follows that $U(f, R) \ge U(f, R \cup \{b\}) \ge \overline{\int_a^b} f + \overline{\int_b^c} f$. The result follows by taking limits on R. (cf. Lecture note: the proof here is similar to the ordinary integral)

8. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Define the function $F(x) := \overline{\int}_a^x f$ for all $x \in [a,b]$. Show that F is Lipschitz continuous on [a,b]

Solution. Let x < y. Note $|F(x) - F(y)| = \left| \overline{\int}_x^y f \right| \le \overline{\int}_x^y |f| \le |x - y| \sup_{t \in [a,b]} |f(t)|$ by Q7 and Q5.

9. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f' is bounded. Show that for all $x < y \in \mathbb{R}$, we have

$$\int_{-x}^{y} f' \le f(y) - f(x) \le \int_{x}^{\overline{y}} f'$$

Solution. Let $P = \{x_i\}_{i=0}^k$ be a partition of [x, y]. Then $f(y) - f(x) = \sum_{i=1}^k f(x_i) - f(x_{i-1}) = \sum_{i=1}^k f'(\xi_i)(x_i - x_{i-1})$ by MVT where $\xi_i \in (x_{i-1}, x_i)$. It is then clear that $L(f', P) \leq f(y) - f(x) \leq U(f', P)$. The result follows by taking limit for P as P is arbitrary.

¹Many thanks to Matthew Liu who pointed out this mistake and provided the counter-example.

10. We say that $f : [0,1] \to \mathbb{R}$ is a <u>step function</u> over [0,1] if it is a linear combination of indicators of disjoint intervals, that is, there exists $\{I_i\}_{i=1}^k$ where $I_i \subset [0,1]$ are disjoint intervals (of any form) and a list of real numbers $\{a_i\}_{i=1}^k$ such that $f = \sum_{i=1}^k a_i \mathbb{1}_{I_i}$. Let $P := \{x_i\}_{i=0}^k$ be partition of [0,1]. Let $(a_i)_{i=1}^k$ be a sequence of real numbers. Define the step function $f := \sum_{i=1}^k a_i \mathbb{1}_{[x_{i-1},x_i)}$. Show that

$$\bar{\int}_{0}^{1} f = \underline{\int}_{0}^{1} f = \sum_{i=1}^{k} a_{i}(x_{i} - x_{i-1})$$

Solution. Simplify the integrals by partitioning it into intervals with respect to P using Q7. Then use Q2 to integrate only constant functions. (cf. HW 4 Solutions)