Unless otherwise specified, if we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 Introduction to Darboux Integration

Definition 1.1. Let $[a, b]$ be a bounded interval. Then
i. We call $P \subset[a, b]$ a partition if it is a finite set containing a, b. In particular we can write $P=\left\{x_{i}\right\}_{i=0}^{k}$ as a finite list where $x_{0}=a, x_{k}=b$ and $x_{0}<x_{1} \cdots<x_{k}$. The collection of partitions on $[a, b]$ can be denoted by $\mathcal{P}_{[a, b]}$, or just \mathcal{P} in this note for convenience.
ii. For $P, Q \in \mathcal{P}_{[a, b]}$, we say that Q is a refinement of P if $P \subset Q$. We also write $P \preceq Q$ if Q refines P. Note that the pair ($\mathcal{P}_{[a, b]}, \preceq$) forms a partially ordered set.

Definition 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Let $P:=\left\{x_{i}\right\}_{i=0}^{k} \subset[a, b]$ be a partition. Then
i. We denote $U(f, P):=\sum_{i=1}^{k} \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)$ the upper sum of f over P.
ii. We denote $L(f, P):=\sum_{i=1}^{k} \inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)$ the lower sum of f over P
iii. We denote $\int_{a}^{b} f:=\inf _{P \in \mathcal{P}_{[a, b]}} U(f, P)$ and $\int_{a}^{b} f:=\sup _{P \in \mathcal{P}_{[a, b]}} L(f, P)$ the upper and lower integral of f over $[a, b]$ respectively. It is not hard to see that they are well-defined since f is bounded.

Conceptual Quick Practice

1. Let (X, \preceq) be a partially ordered set. We say that X is a directed set if every pair of element has an upper bound, that is, for all $x, y \in X$, there exists $z \in X$ such that $z \succeq x$ and $z \succeq y$.
(a) Show that every totally ordered set is a directed set. Hence \mathbb{N} with the usual order is a directed set.
(b) Equip \mathbb{N} with the divisibility order, that is, $n \preceq m$ if n is a factor of m. Show that it is a directed partially ordered set that is not totally ordered.
(c) (Extremely Important!!!) Consider a compact interval $[a, b]$. Show that ($\left.\mathcal{P}_{[a, b]}, \preceq\right)$ with the refinement order is a directed (partially ordered) set.

Solution. (a). In fact every pair of element in a totally ordered set has a maximum. (b). Upper bounds are given by common multiples. (c). Let $P, Q \subset[a, b]$ be partitions. Then $P \cup Q$ is a partition as it is finite and contains a, b. It is clearly a refinement to both P, Q.
2. Following Q1, we are defining more general notions for convergence. Let I be a directed set. Then any function $f: I \rightarrow \mathbb{R}$ is said to be a $\underline{\text { net }}$ over I. By convention, We write $f_{i}:=f(i)$ for all $i \in I$ and denote the net as $f=\left(f_{i}\right)_{i \in I}$. A net is increasing (or decreasing) if it shares the same property as a function.
(a) Show that every sequence can be regarded as a net over \mathbb{N}.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Consider $U_{P}:=U(f, P)$ for all partition $P \in\left(\mathcal{P}_{[a, b]}, \preceq\right)$. Show that $\left(U_{P}\right)_{P \in \mathcal{P}}$ is a decreasing net.
(c) Following (b), define $L_{P}:=L(f, P)$ for all $P \in \mathcal{P}$. Show that $\left(L_{P}\right)_{P \in \mathcal{P}}$ is an increasing net.

Solution. (a). It follows from the fact that \mathbb{N} is a directed set. (b). It is equivalent to show that $P \subset Q$ would imply $U_{P} \geq U_{Q}$ where P, Q are partitions. Consider first the case $Q=P \cup\{x\}$ where $x \notin P$. It clearly follows that $U(f, Q) \leq U(f, P)$. The general result follows from the finiteness of Q. (c) is similar to (b).
3. Let I be a directed set. Consider $x:=\left(x_{i}\right)_{i \in I}$ a net of real numbers. Then we say that $\left(x_{i}\right)$ converges to some real numbers x if for all $\epsilon>0$, there exists $\Lambda \in I$ such that for all $i \succeq \Lambda$, we have $\left|x_{i}-x\right|<\epsilon$.
(a) Let $\left(x_{i}\right)_{i \in I}$ be a net. Suppose x, y are limits of $\left(x_{i}\right)_{i \in I}$. Show that $x=y$.
(b) Part (a) showed that limits of nets are unique if they exist. We can write $\lim _{i} x_{i}:=x$ if x is the limit of the net $\left(x_{i}\right)_{i \in I}$. Suppose $\left(x_{i}\right),\left(y_{i}\right)$ are convergent nets over I. Show that
i. $\lim _{i}\left(x_{i}+y_{i}\right)=\lim _{i} x_{i}+\lim _{i} y_{i}$
ii. $\lim _{i} x_{i} \leq \lim _{i} y_{i}$ if there exists $\Lambda \in I$ such that $x_{i} \leq y_{i}$ for all $i \succeq \Lambda$
(c) Is it true that a converging net is always bounded (defined by considering a net as a function)?
(Hint: Consider the index set to be the set of all real numbers.)
Solution. (a). Let $\epsilon>0$. Then there exists Λ_{1}, Λ_{2} such that we have $\left|x_{i}-x\right|<\epsilon$ if $i \succeq \Lambda_{1}$ and $\left|x_{i}-y\right|<\epsilon$ if $i \succeq \Lambda_{2}$. By directedness, there exists $\Lambda \in I$ such that $\Lambda \succeq \Lambda_{1}, \Lambda_{2}$. Hence we have $|x-y| \leq\left|x_{i}-x\right|+\left|x_{i}-y\right|<2 \epsilon$ by considering some $i \succeq \Lambda$. It follows that $x=y$ as $\epsilon \rightarrow 0$.
(b.i). Note that $\left|x_{i}+y_{i}-x-y\right| \leq\left|x_{i}-x\right|+\left|y_{i}-y\right|$ where $x:=\lim x_{i}$ and $y:=\lim _{i} y_{i}$ for all $i \in I$. Let $\epsilon>0$. Then the proof proceeds as the sequential case. (b.ii). By (i), it suffices to consider the case $x_{i}=0$ for all $i \in I$. Suppose $y:=\lim y_{i}<0$. Then $-y>-y / 2>0$. It follows that there exists $\Lambda^{\prime} \in I$ such that $i \succeq \Lambda^{\prime}$ would imply $\left|y_{i}-y\right|<-y / 2$. This give a contradiction by considering some $i \succeq \Lambda$ and Λ^{\prime}. (c). Consider the function $f(t):=1 / t$ on $(0, \infty)$. Then it is unbounded but converges as a net. In fact $\lim _{t} f(t)=0$.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Show that $\lim _{P} U(f, P)=\bar{\int}_{a}^{b} f:=\inf _{P \in \mathcal{P}} U(f, P)$ and $\lim _{P} L(f, P)=\int_{a}^{b} f:=\sup _{P \in \mathcal{P}} L(f, P)$ where convergence in nets is used.
Solution. Use the fact that $U(f, P)$ and $L(f, P)$ are decreasing and increasing nets respectively.

More Quick Practice

1. Let $A \subset \mathbb{R}$. We define $\mathbb{1}_{A}(x):=\left\{\begin{array}{ll}1 & x \in A \\ 0 & x \notin A\end{array}\right.$ for all $x \in \mathbb{R}$ to be the indicator function of A.
(a) Let $A \subset[0,1]$ be a singleton. Show that $\bar{\int}_{0}^{1} \mathbb{1}_{A}=\int_{0}^{1} \mathbb{1}_{A}=0$.
(b) Let $A \subset[0,1]$ be a finite set. Show that $\bar{\int}_{0}^{1} \mathbb{1}_{A}=\int_{0}^{1} \mathbb{1}_{A}=0$.
(c) Let $A \subset[0,1]$ be a countable set. Is it always true that $\bar{\int}_{0}^{1} \mathbb{1}_{A}=\underline{\int}_{0}^{1} \mathbb{1}_{A}=0$?

Solution. (a) follows from (b). (b). Write $A=\left\{x_{i}\right\}_{i=1}^{k}$. Then $d:=\min _{i \neq j}\left|x_{i}-x_{j}\right|>0$. Let $\epsilon>0$. Consider the partition $P=\{0,1\} \cup\left\{x_{i} \pm \epsilon d / 4 k\right\} \cap[0,1]$. Then it is not hard to see that $0 \leq \bar{\int}_{0}^{1} 1_{\mathbb{A}} \leq$ $U\left(\mathbb{1}_{A}, P\right)=\sum_{i=1}^{k} 2 \epsilon d / 4 k=\epsilon d / 2<\epsilon$. The result follows as $\epsilon \rightarrow 0$. (c). No. Consider $A=\mathbb{Q} \cap[0,1]$.
2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded functions. Suppose $f=g$ except for a finitely many points on $[a, b]$. Show that $\bar{\int}_{a}^{b} f=\bar{\int}_{a}^{b} g$. Is it true that $\underline{\int}_{a}^{b} f=\underline{\int}_{a}^{b} g$?
Solution. The answer to the question is true. We prove only for the case of upper integrals. Write $L:=\bar{\int}_{a}^{b} f$. Let $\epsilon>0$. Then there exists a partition P such that $U(f, P)-L<\epsilon$. Consider a partition Q similar to that in Q1b such that $|U(f, R)-U(g, R)|<\epsilon$ for all refinement R of Q. It follows that $|U(g, T)-L|<2 \epsilon$ for all T refining P, Q. Hence, $\lim _{T} U(g, T)=\bar{\int}_{a}^{b} g=L=\bar{\int}_{a}^{b} f$.
3. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded functions.
(a) Show that $U(f+g, P) \leq U(f, P)+U(g, P)$ for all partition $P \in \mathcal{P}_{[a, b]}$.
(b) Hence, show that $\bar{\int}_{a}^{b}(f+g) \leq \bar{\int}_{a}^{b} f+\bar{\int}_{a}^{b} g$.
(c) Find examples for both the equality and strict inequality case in (b).
(d) Is it true that $\int_{a}^{b}(f+g) \leq \int_{a}^{b} f+\underline{\int}_{a}^{b} g$? If it is false, give a similar inequality that should hold.

Solution. (a) is easy. (b) follows by taking limits of nets in (a) with the help of Q3 in Conceptual Quick Practice. (c). Consider $f=\mathbb{1}_{\mathbb{Q}}$ and $g=-f$ or $g=f$. (d). No. We should have $\int_{a}^{b}(f+g) \geq \int_{a}^{b} f+\int_{a}^{b} g$
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Show that
(a) For all $\lambda \geq 0$, we have $\bar{\int}_{a}^{b} \lambda f=\lambda \bar{\int}_{a}^{b}$; for all $\lambda<0$, we have $\bar{\int}_{a}^{b} \lambda f=\lambda \underline{\int}_{a}^{b} f$
(b) The function defined by $f \mapsto \bar{\int}_{a}^{b} f$ is a convex function over the space of bounded functions, that is, for all $\lambda \in[0,1]$ and $f, g:[a, b] \rightarrow \mathbb{R}$ bounded, we have $\bar{\int}_{a}^{b} \lambda f+(1-\lambda) g \leq \lambda \int_{a}^{b} f+(1-\lambda) \bar{\int}_{a}^{b} g$
Solution. (a). Consider first the upper or lower sums. (b). This follow from 3(b) and 4(a).
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
(a) Let $g:[a, b] \rightarrow \mathbb{R}$ be bounded such that $g \geq f$ on $[a, b]$ pointwise. Show that $\bar{\int}_{a}^{b} g \geq \bar{\int}_{a}^{b} f$ and $\underline{\int}_{a}^{b} g \geq \underline{\int}_{a}^{b} f$.
(b) Show that we have $\left|\bar{\int}_{a}^{b} f\right| \leq \bar{\int}_{a}^{b}|f|$. Is it true that we have $\left|\underline{\int}_{a}^{b} f\right| \leq \underline{\int}_{a}^{b}|f|$?

Solution. (a). Consider first the upper or lower sums. Then take limits of suitable nets. (b). As $-|f| \leq f \leq|f|$, we have $-\bar{\int}_{a}^{b} f \leq-\int_{a}^{b}|f| \stackrel{(*)}{=} \bar{\int}_{a}^{b}-|f| \leq \bar{\int}_{a}^{b} f \leq \bar{\int}_{a}^{b}|f|$, in which we have used scalar multiplication property of upper and lower integrals at $(*)$. The function $f=-\mathbb{1}_{\mathbb{Q}}$ gives a counterexample to the lower integral case \square
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Suppose $f \geq 0$ on $[a, b]$.
(a) Suppose f is continuous. Show that $f \equiv 0$ on $[a, b]$ if and only if $\int_{a}^{b} f=0$
(b) Can the continuity assumption in (a) be dropped? Provide suitable examples whenver necessary.

Solution. (a). Only (\Leftarrow) is non-trivial. Suppose not. Then $f(c)>0$ for some $c \in[a, b]$. Hence $f(x)>f(c) / 2>0$ for all $x \in B_{r}(c) \subset[a, b]$ for some $r>0$. It is then not hard to see that $\int_{a}^{b} f \geq$ $\underline{\int}_{x-r}^{x+r} f \geq 2 r f(c) / 2>0$. (b). No. Consider $f=\mathbb{1}_{\mathbb{Q}}$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function. We define upper and lower integrals of f over a compact interval $[a, b]$ by considering the restriction $\left.f\right|_{[a, b]}$. Show that $\bar{\int}_{a}^{b} f+\bar{\int}_{b}^{c} f=\bar{\int}_{a}^{c} f$ for all $a<b<c$.
Solution. Let P, Q be partitions of $[a, b]$ and $[b, c]$ respectively. Then $P \cup Q$ is a partition of $[a, c]$ and we clearly have $U(f, P)+U(f, Q)=U(f, P \cup Q) \geq \bar{\int}_{a}^{c} f$. It follows that $\bar{\int}_{a}^{c} f \leq \bar{\int}_{a}^{b} f+\bar{\int}_{b}^{c} f$ by taking limits through P, Q. For the other side, let R be a partition of $[a, c]$. Then clearly $R \cup\{b\}$ is a refinement that can be broken into partitions on $[a, b]$ and $[b, c]$. It follows that $U(f, R) \geq U(f, R \cup\{b\}) \geq \bar{\int}_{a}^{b} f+\bar{\int}_{b}^{c} f$. The result follows by taking limits on R. (cf. Lecture note: the proof here is similar to the ordinary integral)
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Define the function $F(x):=\int_{a}^{x} f$ for all $x \in[a, b]$. Show that F is Lipschitz continuous on $[a, b]$
Solution. Let $x<y$. Note $|F(x)-F(y)|=\left|\bar{J}_{x}^{y} f\right| \leq \bar{\int}_{x}^{y}|f| \leq|x-y| \sup _{t \in[a, b]}|f(t)|$ by Q7 and Q5.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that f^{\prime} is bounded. Show that for all $x<y \in \mathbb{R}$, we have

$$
\int_{x}^{y} f^{\prime} \leq f(y)-f(x) \leq \bar{\int}_{x}^{y} f^{\prime}
$$

Solution. Let $P=\left\{x_{i}\right\}_{i=0}^{k}$ be a partition of $[x, y]$. Then $f(y)-f(x)=\sum_{i=1}^{k} f\left(x_{i}\right)-f\left(x_{i-1}\right)=$ $\sum_{i=1}^{k} f^{\prime}\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)$ by MVT where $\xi_{i} \in\left(x_{i-1}, x_{i}\right)$. It is then clear that $L\left(f^{\prime}, P\right) \leq f(y)-f(x) \leq$ $U\left(f^{\prime}, P\right)$. The result follows by taking limit for P as P is arbitrary.

[^0]10. We say that $f:[0,1] \rightarrow \mathbb{R}$ is a step function over $[0,1]$ if it is a linear combination of indicators of disjoint intervals, that is, there exists $\left\{I_{i}\right\}_{i=1}^{k}$ where $I_{i} \subset[0,1]$ are disjoint intervals (of any form) and a list of real numbers $\left\{a_{i}\right\}_{i=1}^{k}$ such that $f=\sum_{i=1}^{k} a_{i} \mathbb{1}_{I_{i}}$. Let $P:=\left\{x_{i}\right\}_{i=0}^{k}$ be partition of $[0,1]$. Let $\left(a_{i}\right)_{i=1}^{k}$ be a sequence of real numbers. Define the step function $f:=\sum_{i=1}^{k} a_{i} \mathbb{1}_{\left[x_{i-1}, x_{i}\right)}$. Show that
$$
\int_{0}^{1} f=\int_{0}^{1} f=\sum_{i=1}^{k} a_{i}\left(x_{i}-x_{i-1}\right)
$$

Solution. Simplify the integrals by partitioning it into intervals with respect to P using Q7. Then use Q2 to integrate only constant functions. (cf. HW 4 Solutions)

[^0]: ${ }^{1}$ Many thanks to Matthew Liu who pointed out this mistake and provided the counter-example.

