1 Introduction to Darboux Integration

Definition 1.1. Let $[a, b]$ be a bounded interval. Then
i. We call $P \subset[a, b]$ a partition if it is a finite set containing a, b. In particular we can write $P=\left\{x_{i}\right\}_{i=0}^{k}$ as a finite list where $\bar{x}_{0}=a, x_{k}=b$ and $x_{0}<x_{1} \cdots<x_{k}$. The collection of partitions on $[a, b]$ can be denoted by $\mathcal{P}_{[a, b]}$, or just \mathcal{P} in this note for convenience.
ii. For $P, Q \in \mathcal{P}_{[a, b]}$, we say that Q is a refinement of P if $P \subset Q$. We also write $P \preceq Q$ if Q refines P. Note that the pair ($\mathcal{P}_{[a, b]}, \preceq$) forms a partially ordered set.

Definition 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Let $P:=\left\{x_{i}\right\}_{i=0}^{k} \subset[a, b]$ be a partition. Then
i. We denote $U(f, P):=\sum_{i=1}^{k} \sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)$ the upper sum of f over P.
ii. We denote $L(f, P):=\sum_{i=1}^{k} \inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\left(x_{i}-x_{i-1}\right)$ the lower sum of f over P
iii. We denote $\bar{\int}_{a}^{b} f:=\inf _{P \in \mathcal{P}_{[a, b]}} U(f, P)$ and $\int_{a}^{b} f:=\sup _{P \in \mathcal{P}_{[a, b]}} L(f, P)$ the upper and lower integral of f over $[a, b]$ respectively. It is not hard to see that they are well-defined since f is bounded.

Conceptual Quick Practice

1. Let (X, \preceq) be a partially ordered set. We say that X is a directed set if every pair of element has an upper bound, that is, for all $x, y \in X$, there exists $z \in X$ such that $z \succeq x$ and $z \succeq y$.
(a) Show that every totally ordered set is a directed set. Hence \mathbb{N} with the usual order is a directed set.
(b) Equip \mathbb{N} with the divisibility order, that is, $n \preceq m$ if n is a factor of m. Show that \mathbb{N} is a directed partially ordered set that is not totally ordered.
(c) (Extremely Important!!!) Consider a compact interval $[a, b]$. Show that $\left(\mathcal{P}_{[a, b]}, \preceq\right)$ with the refinement order is a directed (partially ordered) set.
2. Following Q1, we are defining more general notions for convergence. Let I be a directed set. Then any function $f: I \rightarrow \mathbb{R}$ is said to be a net over I. By convention, We write $f_{i}:=f(i)$ for all $i \in I$ and denote the net as $f=\left(f_{i}\right)_{i \in I}$. A net is increasing (or decreasing) if it shares the same property as a function.
(a) Show that every sequence can be regarded as a net over \mathbb{N}.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Consider $U_{P}:=U(f, P)$ for all partition $P \in\left(\mathcal{P}_{[a, b]}, \preceq\right)$. Show that $\left(U_{P}\right)_{P \in \mathcal{P}}$ is a decreasing net.
(c) Following (b), define $L_{P}:=L(f, P)$ for all $P \in \mathcal{P}$. Show that $\left(L_{P}\right)_{P \in \mathcal{P}}$ is an increasing net.
3. Let I be a directed set. Consider $x:=\left(x_{i}\right)_{i \in I}$ a net of real numbers. Then we say that $\left(x_{i}\right)$ converges to some real numbers x if for all $\epsilon>0$, there exists $\Lambda \in I$ such that for all $i \succeq \Lambda$, we have $\left|x_{i}-x\right|<\epsilon$.
(a) Let $\left(x_{i}\right)_{i \in I}$ be a net. Suppose x, y are limits of $\left(x_{i}\right)_{i \in I}$. Show that $x=y$.
(b) Part (a) showed that limits of nets are unique if they exist. We can write $\lim _{i} x_{i}:=x$ if x is the limit of the net $\left(x_{i}\right)_{i \in I}$. Suppose $\left(x_{i}\right),\left(y_{i}\right)$ are convergent nets over I. Show that

- $\lim _{i}\left(x_{i}+y_{i}\right)=\lim _{i} x_{i}+\lim _{i} y_{i}$
- $\lim _{i} x_{i} \leq \lim _{i} y_{i}$ if there exists $\Lambda \in I$ such that $x_{i} \leq y_{i}$ for all $i \succeq \Lambda$
(c) Is it true that a converging net is always bounded (defined by considering a net as a function)? (Hint: Consider the index set to be the set of all real numbers.)

4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Show that $\lim _{P} U(f, P)=\bar{\int}_{a}^{b} f:=\inf _{P \in \mathcal{P}} U(f, P)$ and $\lim _{P} L(f, P)=\int_{a}^{b} f:=\sup _{P \in \mathcal{P}} L(f, P)$ where convergence in nets is used.

More Quick Practice

1. Let $A \subset \mathbb{R}$. We define $\mathbb{1}_{A}(x):=\left\{\begin{array}{ll}1 & x \in A \\ 0 & x \notin A\end{array}\right.$ for all $x \in \mathbb{R}$ to be the $\underline{\text { indicator function }}$ of A.
(a) Let $A \subset[0,1]$ be a singleton. Show that $\bar{\int}_{0}^{1} \mathbb{1}_{A}=\int_{0}^{1} \mathbb{1}_{A}=0$.
(b) Let $A \subset[0,1]$ be a finite set. Show that $\bar{\int}_{0}^{1} \mathbb{1}_{A}=\int_{0}^{1} \mathbb{1}_{A}=0$.
(c) Let $A \subset[0,1]$ be a countable set. Is it always true that $\bar{\int}_{0}^{1} \mathbb{1}_{A}=\int_{0}^{1} \mathbb{1}_{A}=0$?
2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded functions. Suppose $f=g$ except for a finitely many points on $[a, b]$. Show that $\bar{\int}_{a}^{b} f=\bar{\int}_{a}^{b} g$. Is it true that $\int_{a}^{b} f=\int_{a}^{b} g$?
3. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded functions.
(a) Show that $U(f+g, P) \leq U(f, P)+U(g, P)$ for all partition $P \in \mathcal{P}_{[a, b]}$.
(b) Hence, show that $\bar{\int}_{a}^{b}(f+g) \leq \bar{\int}_{a}^{b} f+\bar{\int}_{a}^{b} g$.
(c) Find examples for both the equality and strict inequality case in (b).
(d) Is it true that $\int_{a}^{b}(f+g) \leq \underline{\int}_{a}^{b} f+\underline{\int}_{a}^{b} g$? If it is false, give a similar inequality that should hold.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Show that
(a) For all $\lambda \geq 0$, we have $\bar{\int}_{a}^{b} \lambda f=\lambda \bar{\int}_{a}^{b}$; for all $\lambda<0$, we have $\bar{\int}_{a}^{b} \lambda f=\lambda \underline{\int}_{a}^{b} f$
(b) The function defined by $f \mapsto \bar{\int}_{a}^{b} f$ is a convex function over the space of bounded functions, that is, for all $\lambda \in[0,1]$ and $f, g:[a, b] \rightarrow \mathbb{R}$ bounded, we have $\bar{\int}_{a}^{b} \lambda f+(1-\lambda) g \leq \lambda \bar{\int}_{a}^{b} f+(1-\lambda) \bar{\int}_{a}^{b} g$
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
(a) Let $g:[a, b] \rightarrow \mathbb{R}$ be bounded such that $g \geq f$ on $[a, b]$ pointwise. Show that $\bar{\int}_{a}^{b} g \geq \bar{\int}_{a}^{b} f$ and $\underline{\int}_{a}^{b} g \geq \int_{a}^{b} f$.
(b) Show that we have $\left|\bar{\int}_{a}^{b} f\right| \leq \bar{\int}_{a}^{b}|f|$. Is it true that we have $\left|\underline{\int}_{a}^{b} f\right| \leq \underline{\int}_{a}^{b}|f|$?
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Suppose $f \geq 0$ on $[a, b]$.
(a) Suppose f is continuous. Show that $f \equiv 0$ on $[a, b]$ if and only if $\int_{a}^{b} f=0$
(b) Can the continuity assumption in (a) be dropped? Provide suitable examples whenver necessary.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded function. We define upper and lower integrals of f over a compact interval $[a, b]$ by considering the restriction $\left.f\right|_{[a, b]}$. Show that $\bar{\int}_{a}^{b} f+\bar{\int}_{b}^{c} f=\bar{\int}_{a}^{c} f$ for all $a<b<c$.
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Define the function $F(x):=\bar{\int}_{a}^{x} f$ for all $x \in[a, b]$. Show that F is Lipschitz continuous on $[a, b]$
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that f^{\prime} is bounded. Show that for all $x<y \in \mathbb{R}$, we have

$$
\int_{x}^{y} f^{\prime} \leq f(x)-f(y) \leq \int_{x}^{y} f^{\prime}
$$

10. We say that $f:[0,1] \rightarrow \mathbb{R}$ is a step function over $[0,1]$ if it is a linear combination of indicators of disjoint intervals, that is, there exists $\left\{I_{i}\right\}_{i=1}^{k}$ where $I_{i} \subset[0,1]$ are disjoint intervals (of any form) and a list of real numbers $\left\{a_{i}\right\}_{i=1}^{k}$ such that $f=\sum_{i=1}^{k} a_{i} \mathbb{1}_{I_{i}}$. Let $P:=\left\{x_{i}\right\}_{i=0}^{k}$ be partition of $[0,1]$. Let $\left(a_{i}\right)_{i=1}^{k}$ be a sequence of real numbers. Define the step function $f:=\sum_{i=1}^{k} a_{i} \mathbb{1}_{\left[x_{i-1}, x_{i}\right)}$. Show that

$$
\int_{0}^{1} f=\int_{0}^{1} f=\sum_{i=1}^{k} a_{i}\left(x_{i}-x_{i-1}\right)
$$

