Unless otherwise specified, we always use I to denote an open interval; logarithmic expressions (with log) are in the natural base. If we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 L'Hospital's Rule

Theorem 1.1 (Generalized Cauchy Mean Value Theorem). Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions that are differentiable on (a, b). Suppose $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there exists $c \in(a, b)$ such that

$$
\frac{f(a)-f(b)}{g(a)-g(b)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Theorem 1.2 (L'Hospital Rule). Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions that are differentiable on (a, b) where $-\infty \leq a<b \leq \infty$ (turn closed brackets to open brackets for $\pm \infty$). Suppose $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Further suppose $L:=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists. Then we have

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L
$$

if either of the following is satisfied:
a) $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} g(x)=0$
b) $\lim _{x \rightarrow a^{+}} g(x)=\infty$ or $\lim _{x \rightarrow a^{+}} g(x)=-\infty$

Similar statements can be made for left-handed limits and two-sided limits.

Quick Practice

1. Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable. Suppose $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Show that
(a) f is injective.
(b) Suppose $f^{\prime}(c)>0$ for some $c \in(a, b)$. Then f is strictly increasing.

Solution. (a). Use the Rolle's Theorem. (b). Use the fact that f^{\prime} has the intermediate value property (Darboux's Theorem): suppose there exists $d \in(a, b)$ with $f^{\prime}(d)<0$. WLOG, assume $c<d$. Then f has an extremum on $[c, d]$ that is not c, d, which has 0 derivative by the local extrema theorem. Contradiction.
2. Let $f, g:(a, b) \rightarrow \mathbb{R}$ be differentiable such that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Fix $c \in(a, b)$. Suppose $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{+}} g(x)=0$. Show that the L'Hospital Rule holds, that is, if $L:=\lim _{x \rightarrow c^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists then $\lim _{x \rightarrow c^{+}} \frac{f(x)}{g(x)}=L$ using the Cauchy Mean Value Theorem.
Solution. Consider $c<y<x$ where x is close enough to c by the definition of $\lim _{x \rightarrow c^{+}} f^{\prime}(x) / g^{\prime}(x)$. Note that by Cauchy MVT, we have $f(x)-f(y) / g(x)-g(y)=f^{\prime}(\xi(x)) / g^{\prime}(\xi(x))$, which is close to L as x is close enough to c. The result follows by limiting $y \rightarrow c^{+}$
3. Let $f(x):=\left\{\begin{array}{ll}x^{2} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{array}\right.$ and let $g(x):=\sin x$ for all $x \in \mathbb{R}$.
(a) Show that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0$ but $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist.
(b) Some says that the above example violates the L'Hospital Rule. Do you agree? Explain your answer.
4. Evaluate the following limits:
a) $\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{1-\cos x}$
b) $\lim _{x \rightarrow 0^{+}} x^{3} \log x$
c) $\lim _{x \rightarrow \infty} x^{3} e^{-x}$
d) $\lim _{x \rightarrow 0^{+}} \sqrt{x} \log (x)$
e) $\lim _{x \rightarrow \infty} x^{1 / x}$
f) $\lim _{x \rightarrow \infty}(1+3 / x)^{x}$
5. (Very Tricky Question). Let f be differentiable on $(0, \infty)$. Suppose $L:=\lim _{x \rightarrow \infty}\left(f(x)+f^{\prime}(x)\right)$ exists. Show that $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$
Solution. Consider $e^{x} f(x)$.
6. Let $f, g:(a, b) \rightarrow \mathbb{R}$ be differentiable such that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Fix $c \in(a, b)$. Prove the L'Hospital Rule under the assumption that $\lim _{x \rightarrow c^{+}} g(x)=\infty$.
Solution. Fix a small enough x. Then consider $0<y<x$. Observe that $f(y)-f(x) / g(y)-g(x)$ is close to L as in Q2 and $f(y) / g(y)$ is close to $L(1-g(x) / g(y))+f(x) / g(y)$, which converges to L as $y \rightarrow c^{+}$ by multiplying a common $1 / g(y)$ to both sides of the first fraction.

2 More on Convex Functions

Definition 2.1. Let $f: I \rightarrow \mathbb{R}$ where I is an interval. Then f is a convex function if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for all $x, y \in I$ and $t \in[0,1]$
Theorem 2.2. Suppose $f: I \rightarrow \mathbb{R}$ is twice-differentiable on an open intervals. Then f is convex on I if and only if $f^{\prime \prime} \geq 0$ on I.

Quick Practice

1. Let $p>0$. Define $f(x):=x^{p}$ on $(0, \infty)$. Find all values of p such that f is convex on $(0, \infty)$

Solution. Consider the second derivatives: $p \geq 1$. It is concave for $p \in(0,1]$.
2. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function.
(a) Show that f is convex on $[0, \infty)$ if it is convex on $(0, \infty)$
(b) Suppose f is convex, increasing on $[0,1]$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x):=f(|x|)$. Show that g is a convex function.
(c) Let $p \geq 1$. Show that $g(x):=|x|^{p}$ is convex on \mathbb{R} but is not differentiable on \mathbb{R} in general.
(d) Let $p \in(0,1)$. Show that $g(x):=|x|^{p}$ is a concave function on $[0, \infty)$, that is, $g(t x+(1-t) y) \geq$ $t g(x)+(1-t) g(y)$ for all $x, y \in[0, \infty)$ and $t \in[0,1]$. Is it true that g is concave on \mathbb{R} ?
Solution. (a). Let $a_{n} \rightarrow 0$ with $a_{n} \neq 0$ and let $y \in(0, \infty)$. Let $t \in[0,1]$. Then we have $f\left(t a_{n}+(1-t) y\right) \leq$ $t f\left(a_{n}\right)+(1-t) f(y)$. Putting $n \rightarrow 0$ together with the continuity of f, it is clear that f is convex on $[0, \infty)$.(b). Let $x, y \in \mathbb{R}$ with $t \in[0,1]$. Then
$g(t x+(1-t) y)=f(|t x+(1-t) y|) \leq f(t|x|+(1-t)|y|) \leq t f(|x|)+(1-t) f(|y|)=t g(x)+(1-t) g(y)$
in which the first inequality uses the fact that f is increasing.
(c) follows from Q1 and 2c directly. (d). The first part follows from the second derivative test for concavity. For the second part, g is not concave on \mathbb{R}. It is evident by look at the graph.
3. In this exercise, we would be showing the Hölder's inequality: that is, let $p, q \geq 1$ be having the property that $p^{-1}+q^{-1}=1$ (we say that p, q are conjugate exponents of each other). Then for all finite list of real numbers $\left(x_{i}\right)_{i=1}^{k}$ and $\left(y_{i}\right)_{i=1}^{k}$, we have

$$
\sum_{i=1}^{k}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{k}\left|y_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{k}\left|x_{i}\right|^{q}\right)^{1 / q}
$$

Observe that this is a generalization to the Cauchy-Schwarz inequality where $p=q=2$.
(a) Show that $x \mapsto \exp (x)$ is a convex function on \mathbb{R}.
(b) Using the above convexity, show that for all $r, s \geq 0$ and $p, q \geq 1$ with $p^{-1}+q^{-1}=1$, we have

$$
r s \leq \frac{r^{p}}{p}+\frac{s^{q}}{q}
$$

This is called the Young's inequality.
(c) Prove the Hölder's inequality.
(Hint: Consider the normalized case first, that is, the case where $\sum_{i=1}^{k}\left|x_{i}\right|^{p}=\sum_{i=1}^{k}\left|y_{i}\right|^{q}=1$)
Solution. (a). Consider the 2nd derivative. (b). The case for $r=0$ or $s=0$ is trivial. Suppose $r, s>0$. Then $r^{p}, s^{q}>0$. Find x_{1}, x_{2} such that $\exp \left(x_{1}\right)=r^{p}$ and $\exp \left(x_{2}\right)=s^{q}$. Take $t=1 / p$. Then $\exp \left(t x_{1}+(1-t) x^{2}\right) \leq t \exp \left(x_{1}\right)+(1-t) \exp \left(x_{2}\right)$, which gives the Young's inequality.
(c). The normalized case is easy. For the general case, suppose $x, y \neq 0 \in \mathbb{R}^{k}$. Consider $x^{\prime}:=x /\|x\|_{p}$ and $y^{\prime}:=y /\|y\|_{q}$ where $\|x\|_{s}:=\left(\sum_{i=1}^{k}\left|x_{i}\right|^{s}\right)^{1 / s}$ for $s \geq 1$ and $x \in \mathbb{R}^{k}$. Applying the normarlized case to x^{\prime}, y^{\prime} yields the answer.
4. This is a follow-up to Question 3. Let $k \in \mathbb{N}$ and $p \geq 1$. Let $x=\left(x_{1}, \cdots, x_{k}\right) \in \mathbb{R}^{k}$. We can define $\|x\|_{p}:=\left(\sum_{i=1}^{k}\left|x_{i}\right|^{p}\right)^{1 / p}$, called the $p-$ norm of x. We are going to show that $\|\cdot\|_{p}$ satisfy the triangle inequality.
(a) Show that for all $\alpha \in \mathbb{R}$, we have $\|\alpha x\|_{p}=|\alpha|\|x\|_{p}$ for all $x \in \mathbb{R}^{k}$.
(b) Show that $\|x\|_{p}=0$ if and only if $x=0$.
(c) Using the Hölder's inequality, show that $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$ for all $x, y \in \mathbb{R}^{k}$, that is, write $x=\left(x_{1}, \cdots, x_{k}\right)$ and $y=\left(y_{1}, \cdots, y_{k}\right)$, then we have

$$
\left(\sum_{i=1}^{k}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{k}\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{k}\left|y_{i}\right|^{p}\right)^{1 / p}
$$

(Hint: Write $\left|x_{i}+y_{i}\right|^{p}=\left|x_{i}+y_{i}\right|^{p-1}\left|x_{i}+y_{i}\right|$ and try to see what the conjugate exponent of p is)
Solution. (a) and (b) are standard. (c) basically follows from the hint. Observe that $\left|x_{i}+y_{i}\right|^{p} \leq$ $\left|x_{i}+y_{i}\right|^{p-1}\left|x_{i}\right|+\left|x_{i}+y_{i}\right|^{p-1}\left|y_{i}\right|$. Therefore by Hölder's inequality, we have

$$
\sum\left|x_{i}+y_{i}\right|^{p} \leq\left(\sum\left|x_{i}+y_{i}\right|^{(p-1) q}\right)^{1 / q}\left(\left(\sum\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum\left|y_{i}\right|^{p}\right)^{1 / p}\right)
$$

where $(p-1) q=p$. The result follows by dividing both sides by $\left(\sum\left|x_{i}+y_{i}\right|^{(p-1) q}\right)^{1 / q}$
5. This is independent to Q4 but we are making use of the notations there. We are giving a proof for the triangle inequality of $p-$ norms without using the Hölder's inequality for $p \geq 1$.
(a) Let $x, y \in \mathbb{R}^{k} \backslash\{0\}$. Suppose $\|x\|_{p}+\|y\|_{p}=1$. Show that there exists $X, Y \in \mathbb{R}^{k}$ with $\|X\|_{p}=$ $\|Y\|_{p}=1$ and $\lambda \in[0,1]$ such that $x=\lambda X$ and $y=(1-\lambda) Y$.
(b) Show the triangle inequality for the case where $\|x\|_{p}+\|y\|_{p}=1$.
(c) Show the general triangle inequality.
(d) (Reverse triangle inequality). Suppose $p \in(0,1)$. Let $x, y \in \mathbb{R}^{k}$ be with non-negative entries, that is, we have $x_{i}, y_{i} \geq 0$ for all $i=1, \cdots, k$. Then the reverse triangle inequality holds:

$$
\left(\sum_{i=1}^{k}\left(x_{i}+y_{i}\right)^{p}\right)^{1 / p} \geq\left(\sum_{i=1}^{k} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{k} y_{i}^{p}\right)^{1 / p}
$$

Solution. (a) is easy and (b) follows directly from convexity. For (c). Suppose $x, y \in \mathbb{R}^{k}$. Define $x^{\prime}:=x /\left(\|x\|_{p}+\|y\|_{p}\right)$ and $y^{\prime}:=y /\left(\|x\|_{p}+\|y\|_{p}\right)$. Then the result follows from applying part (b) on x^{\prime}, y^{\prime}. For (d), it is simply that convexity is replaced by concavity. Non-negative entries are considered because $x \mapsto|x|^{p}$ is concave on the non-negative entries only but not the whole real line.
6. Fix $k \in \mathbb{N}$. Let $x \in \mathbb{R}^{k}$. Let $p>0$. We define $\|x\|_{p}:=\left(\sum_{i=1}^{k}\left|x_{i}\right|^{p}\right)^{1 / p}$.
(a) Let $x \in(0,1)$. Show that $x^{p} \leq x^{q}$ for all $p \geq q>0$.
(b) Show that for all $x \in \mathbb{R}^{k}$, we have $\|x\|_{p} \leq\|x\|_{q}$ for all $p \geq q>0$.
(Hint: Consider the case $\|x\|_{q}=1$ first.)
Solution. (a). Show that $s \mapsto x^{s}$ is decreasing by considering derivatives. (b). Suppose $\|x\|_{q}=1$. Then we can WLOG assume $x_{i}<1$ for all i (otherwise there would be exactly one entry attaining 1 ; such case would be trivial). It follows from part (a) that $\left|x_{i}\right|^{p} \leq\left|x_{i}\right|^{q}$ and so $\|x\|_{p} \leq 1$. For the general case, consider $x^{\prime}:=x /\|x\|_{q}$ and apply the normalized case.

3 Hölder's Continuity and a Nowhere Differentiable Example

Definition 3.1. Let $f: I \rightarrow \mathbb{R}$ be a function on some intervals. Let $\alpha \in(0,1]$. Then we say that f is $\alpha-$ Hölder continuous on I if there exists $K>0$ such that $|f(x)-f(y)| \leq K|x-y|^{\alpha}$ for all $x, y \in I$. Note that $\alpha=1$ is equivalent to the Lipschitz condition.

Quick Practice (Hard)

1. Let $\alpha>1$ and $f: I \rightarrow \mathbb{R}$ be a function that is α-Hölder continuous. Show that f is a constant function. This explains why we do not consider $\alpha>1$ in the definition of Hölder continuity.
Solution. In this case, f is differentiable with 0 derivatives. It follows from the MVT that f is a constant.
2. Let $\alpha \in(0,1]$. Define $f(x):=x^{\alpha}$ on $[0, \infty)$.
(a) Show that f is α - Hölder continuous on $[0, \infty)$
(b) Show that f is not β - Hölder continuous for all $\beta \neq \alpha$ on $[0, \infty)$ with $\beta \in(0,1]$.
(c) Show that f is β - Hölder continuous for all $0<\beta \leq \alpha$ on $A \subset[0, \infty)$ where A is bounded.

Solution. (a). We have to show that $x^{\alpha}-y^{\alpha} \leq(x-y)^{\alpha}$ for $\alpha \in(0,1]$ and $x>y \geq 0$. Take $z:=(x-y, y) \in \mathbb{R}^{2}$. Then it follows from convexity results that $\|z\|_{1} \leq\|z\|_{\alpha}$. This implies that $|x-y|+|y| \leq\left((x-y)^{\alpha}+y^{\alpha}\right)^{1 / \alpha}$. The result follows as $x>y \geq 0$. (b). Consider $x_{n}:=n$ and $x_{n}:=1 / n$ with $y:=0$ for $\beta<\alpha$ and $\beta>\alpha$ respectively. (c). Note that $|x-y|^{\alpha}=|x-y|^{\alpha-\beta}|x-y|^{\beta} \leq$ $(2 \sup (A))^{\alpha-\beta}|x-y|^{\beta}$ as $\alpha-\beta \geq 0$.
3. Let $f: I \rightarrow \mathbb{R}$ be a function over some interval I.
(a) Show that f is uniformly continuous if f is α-Hölder continuous for some $\alpha \in(0,1]$.
(b) Show that the converse is not true: there exists a uniformly continuous function that is not α-Hölder continuous for all $\alpha \in(0,1]$.
(Hint: Consider $f:[0,1 / 2] \rightarrow \mathbb{R}$ defined by $f(x):=1 / \log (x)$ for $x>0$ with $f(0):=0$)
Solution. (a) is easy. (b). Use L'Hospital Rule.
4. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function. We say that f is locally α-Hölder continuous $(\alpha \in(0,1])$ at $x \in[0,1]$ if there exists $r>0$ such that $\left.f\right|_{B_{r}(x) \cap[0,1]}$ is $\alpha-$ Hölder continuous. We use the term locally Lipschitz for the case $\alpha=1$.
(a) Show that f is a Lipschitz function on $[0,1]$ if and only if f is locally Lipschitz at x for all $x \in[0,1]$.
(b) Show that f is α-Hölder continuous on $[0,1]$ if and only if f is locally α-Hölder continuous at x for all $x \in[0,1]$

Solution. (a) and (b) are similar: make use of the compactness property of $[0,1]$. For (a). ($\Leftarrow)$. Note that $[0,1] \subset \bigcup_{x} B_{r}(x)$ is an open cover. Therefore, there exists x_{1}, \cdots, x_{n} such that $[0,1] \subset \bigcup_{i=1}^{n} B_{r}\left(x_{i}\right)$. Next let $x, y \in[0,1]$. Then there exists a path t_{0}, \cdots, t_{k} with $t_{0}:=x$ to $t_{k}:=y$ with $t_{i}, t_{i-1} \in B_{r}\left(x_{j}\right)$ for some $1 \leq j \leq n$ and length $k \leq n$. (Otherwise there would be contradiction to connectedness of intervals). It then follows from triangle inequality that $|f(x)-f(y)| \leq n \max _{i} \operatorname{Lip}\left(\left.f\right|_{B_{r}\left(x_{i}\right)}\right)|x-y|$ where Lip denotes the Lipschitz constant.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function with $f(0)=f(1)$. Then we call $\bar{f}: \mathbb{R} \rightarrow \mathbb{R}$ the periodic extension of f if $\bar{f}(t+n)=f(t)$ for all $t \in[0,1]$ and $n \in \mathbb{Z}$.
(a) (20-21 2050 Rev. Exercise) Suppose f is continuous. Show that the periodic extension \bar{f} is uniformly continuous.
(b) Suppose f is L-Lipschitz. Show that the extension \bar{f} is also L-Lipschitz. (f is L-Lipschitz if $|f(x)-f(y)| \leq L|x-y|$ for all possible $x, y)$
(c) Suppose f is α-Hölder continuous with $\alpha \in(0,1]$. Is it true that the periodic extension \bar{f} is also α-Hölder continuous?

Solution. All share similar techniques. Please refer to the quoted Exercise for part (a) and Q4.
6. (Very challenging). Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by $f(x):=\left\{\begin{array}{ll}0 & x=n / 2, n \in \mathbb{Z} \text { is even } \\ 1 & x=n / 2, n \in \mathbb{Z} \text { is odd }\end{array}\right.$ and extending linearly in between. Let $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be the periodic extension of f to \mathbb{R}. It is not hard to see that f_{1} is given by the same defining formula as f (with a different domain). Now define for all $k \in \mathbb{N}$ that $f_{k}(t):=2^{-k+1} f_{1}\left(2^{k-1} t\right)$ for all $t \in \mathbb{R}$.
(a) Show and convince yourself that for all $k \in \mathbb{N}$, we have

$$
f_{k}(x):= \begin{cases}0 & x=n / 2^{k}, n \in \mathbb{Z} \text { is even } \\ 2^{-k+1} & x=n / 2^{k}, n \in \mathbb{Z} \text { is odd }\end{cases}
$$

with other values given by the linear extensions between the defined dyadic points.
(b) Show that for all $k \in \mathbb{N}, f_{k}$ consists of straight lines of slopes ± 1 with horizontal length $1 / 2^{k}$. Furthermore, f_{k} are periodic with period $1 / 2^{k-1}$.
(c) Fix $x \in \mathbb{R}$. Note that $f_{k}(x) \geq 0$ for all $k \in \mathbb{N}$. Define $F(x):=\sum_{i=1}^{\infty} f_{i}(x):=\lim _{n} \sum_{i=1}^{n} f_{i}(x) \in$ $[0, \infty]$. Show that for all dyadic number $x \in \mathbb{R}$ (that is, $x=k / 2^{m}$ for some $k \in \mathbb{Z}$ and $m \in \mathbb{N}$) we have that $F(x)$ is a finite sum. Moreover, show that $F(x)<\infty$ for all $x \in \mathbb{R}$.
(d) Show that for all $x \in \mathbb{R}$ and $k \in \mathbb{N}$, there exists $h_{k} \in\left\{ \pm 1 / 2^{k+1}\right\}$ such that $\left|f_{k}\left(x+h_{k}\right)-f_{k}(x)\right|=$ $\left|h_{k}\right|$ with additional facts that
i. $\left|f_{i}\left(x+h_{k}\right)-f_{i}(x)\right|=\left|h_{k}\right|$ for all $i \leq k \in \mathbb{N}$.
ii. $\left|f_{i}\left(x+h_{k}\right)-f_{i}(x)\right|=0$ for all $i \geq k+2 \in \mathbb{N}$.
(e) Show that $F(x):=\sum_{i=1}^{\infty} f_{i}(x)$ is nowhere differentiable on \mathbb{R}, that is, F is not differentiable for all $x \in \mathbb{R}$.
(f) (Hard) Show that F is not Lipschitz but F is $\alpha-$ Hölder continuous for all $\alpha \in(0,1)$.

Solution. Please refer to Appendex E of the textbook for part (a) to (e). We give only the solution to (f). Note that one should have shown also in part (e) that F is not Lipschitz. It remains to show that F is α-Hölder continuous for all $\alpha \in(0,1)$. Note that by Question 4, 5 , it suffices to show that F is locally α-Hölder continuous on $[0,1]$. To this end, let $\alpha \in(0,1)$. Let $x \in[0,1]$ and $h \in\left(0,2^{-4}\right)$. Suppose also that $x+h \in[0,1]$. We want to show that there exists $K>0$ independent of h such that $|F(x+h)-F(x)| \leq K|h|^{\alpha}$. To proceed, define $n:=\min \left\{j \in \mathbb{N}: h>1 / 2^{j+2}\right\} \geq 2$. Then $2^{-(n+2)} \leq h \leq 2^{-(n+1)}$. Note that $2^{-(n+1)}$ is the horizontal length of the lines of the graph of f_{n}. It follows that we have

$$
\begin{aligned}
|F(x+h)-F(x)| & \leq \sum_{i=1}^{\infty}\left|f_{i}(x+h)-f_{i}(x)\right|=\sum_{i=1}^{n}\left|f_{i}(x+h)-f_{i}(x)\right|+\sum_{i>n}\left|f_{i}(x+h)-f_{i}(x)\right| \\
& \leq \sum_{i=1}^{n} 1 \cdot h+\sum_{i>n} \frac{1}{2^{i}}+\frac{1}{2^{i}}=n h+2 \cdot 2^{-n}
\end{aligned}
$$

in which we have used the fact that f_{i} are 1-Lipschitz. Notice that from $2^{-(n+2)} \leq h \leq 2^{-(n+1)}$ we have $2^{-n} \leq 4 h$ and $2 h \leq 2^{-n}$. From the latter we also have $n \leq-1-\log _{2} h$. It follows that we have

$$
|F(x+h)-F(x)| \leq n h+2 \cdot 2^{-n} \leq(8+n) h \leq\left(7-\log _{2} h\right) h=\left(7-\log _{2} h\right) h^{1-\alpha} \cdot h^{\alpha}
$$

Note that the expression $\left(7-\log _{2} h\right) h^{1-\alpha}$ is bounded by 1 as long as h is small enough since $\lim _{h \rightarrow 0^{+}}(7-$ $\left.\log _{2} h\right) h^{1-\alpha}=0$ by the L'Hospital Rule. It follows that F is locally $\alpha-$ Hölder continuous for all $x \in[0,1]$ by considering a small enough neighborhood (with diameter $2^{-4}>h>0$ small enough such that $\left.\left(7-\log _{2} h\right) h^{1-\alpha} \leq 1\right)$, which is independent of the point.
7. This is a follow-up to Question 6. Using the same periodic function f_{1} defined in the previous question, we define $g_{k}(t):=a^{k-1} f_{1}\left(2^{k-1}(t)\right)$ for all $t \in \mathbb{R}$ where $a \in(0,1)$ with $2 a>1$. Define $G(t):=\sum_{i=1}^{\infty} g_{i}(t)$.
(a) Show that G is well-defined,
(b) Show that G is nowhere differentiable.
(c) Show that G is α-Hölder continuous with $\alpha=-\log _{2}(a)$

Solution. All are similar to Q6.

