2021 - 2022 MATH2068 Tutorial 3 - L’Hospital Rule, Convexity and More (Suggested Solutions in Brief)

Unless otherwise specified, we always use I to denote an open interval; logarithmic expressions (with log)
are in the natural base. If we write (a, b) or [a,b], it is always the case that a < b € R.

1 L’Hospital’s Rule

Theorem 1.1 (Generalized Cauchy Mean Value Theorem). Let f, g : [a,b] = R be continuous functions that
are differentiable on (a,b). Suppose ¢'(z) # 0 for all x € (a,b). Then there exists c € (a,b) such that

fla)= £ _ f(e)

g(a) —g(b)  ¢'(c)
Theorem 1.2 (L’Hospital Rule). Let f, g : [a,b] — R be continuous functions that are differentiable on (a,b)
where —oo < a < b < 0o (turn closed brackets to open brackets for £00). Suppose ¢'(x) # 0 for all x € (a,b).

!/
Further suppose L := lim (@)
z—a™t g/(fli)

exists. Then we have

lim @)

r—at g(ac)

if either of the following is satisfied:
a) limg,_ o+ f(z) =lim,_q+ g(x) =0 b) limg,_q+ g(x) = 00 orlim,_, .+ g(z) = —c0

Similar statements can be made for left-handed limits and two-sided limits.

Quick Practice
1. Let f : (a,b) — R be differentiable. Suppose f'(z) # 0 for all z € (a,b). Show that

(a) f is injective.
(b) Suppose f’(c) > 0 for some ¢ € (a,b). Then f is strictly increasing.

Solution. (a). Use the Rolle’s Theorem. (b). Use the fact that f’ has the intermediate value property
(Darboux’s Theorem): suppose there exists d € (a,b) with f/(d) < 0. WLOG, assume ¢ < d. Then f has
an extremum on [¢, d] that is not ¢, d, which has 0 derivative by the local extrema theorem. Contradiction.

2. Let f,g : (a,b) — R be differentiable such that ¢’(x) # 0 for all z € (a,b). Fix ¢ € (a,b). Suppose

lim,_,+ f(2) = limy_,+ g(z) = 0. Show that the L'Hospital Rule holds, that is, if L := lim, .+ —;’ g;

exists then lim,_, .+ g Eg = L using the Cauchy Mean Value Theorem.
Solution. Consider ¢ < y < x where x is close enough to ¢ by the definition of lim,_,.+ f'(x)/g¢'(x).
Note that by Cauchy MVT, we have f(x) — f(y)/g(x) — g(y) = f(&(x))/g'(£(x)), which is close to L as
x is close enough to c. The result follows by limiting y — ¢

2¢in(1
ﬁ sin(l/z) = # 8 and let g(z) :=sinz for all x € R.
m =

3. Let f(x) := {

a ow that lim, ,o == = ut lim,_,g :—I oes not exist.
Show that 1 L4 = 0 but i ok

(b) Some says that the above example violates the L'Hospital Rule. Do you agree? Explain your
answer.
4. Evaluate the following limits:

e *—2

a) lim, o ezltw b) lim,_,o+ 2°logx c) limg o 23e™%
d) lim,_,o+ /7 log(x) e) lim, oo z'/* f) limg_oo(l 4 3/x)"

5. (Very Tricky Question). Let f be differentiable on (0,00). Suppose L := lim, . (f(x) + f/(z)) exists.
Show that lim, o f(2) = L and lim,_, f/'(z) =0

Solution. Consider e¢” f(x).

6. Let f,g : (a,b) — R be differentiable such that ¢’(z) # 0 for all z € (a,b). Fix ¢ € (a,b). Prove the
L’Hospital Rule under the assumption that lim,_,.+ g(z) = occ.
Solution. Fix a small enough . Then consider 0 < y < x. Observe that f(y)— f(x)/g(y) —g(zx) is close
to L as in Q2 and f(y)/g(y) is close to L(1 — g(x)/g(y)) + f(x)/g(y), which converges to L as y — ¢
by multiplying a common 1/¢(y) to both sides of the first fraction.
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2 More on Convex Functions

Definition 2.1. Let f: I — R where [ is an interval. Then f is a convex function if

fltz+ (1 =t)y) <tf(z) + (1 -1)f(y)
for all z,y € I and t € [0,1]

Theorem 2.2. Suppose f: I — R is twice-differentiable on an open intervals. Then f is convex on I if and
only if f/ >0 on I.

Quick Practice
1. Let p > 0. Define f(x) := 2P on (0,00). Find all values of p such that f is convex on (0, c0)

Solution. Consider the second derivatives: p > 1. It is concave for p € (0, 1].

2. Let f:[0,00) = R be a continuous function.

(a) Show that f is convex on [0, 00) if it is convex on (0, c0)

(b) Suppose f is convex, increasing on [0,1]. Define g : R — R by g(z) := f(|z|). Show that g is a
convex function.

(c) Let p > 1. Show that g(z) := |z|” is convex on R but is not differentiable on R in general.

(d) Let p € (0,1). Show that g(z) := |z|” is a concave function on [0, 00), that is, g(tz + (1 —t)y) >
tg(z) + (1 —t)g(y) for all z,y € [0,00) and ¢ € [0, 1]. Is it true that g is concave on R?

Solution. (a). Let a,, — 0 with a,, # 0 and let y € (0,00). Let ¢ € [0, 1]. Then we have f(ta,+(1—t)y) <
tf(an) + (1 —t)f(y). Putting n — 0 together with the continuity of f, it is clear that f is convex on
[0,00). (b). Let z,y € R with ¢ € [0,1]. Then

glte+(1—1)y) = f(te + (1= t)y]) < F(tle] + (1~ Dlyl) < tF(al) + (1~ F(lyl) = tg(x) + (1~ )g(y)

in which the first inequality uses the fact that f is increasing.
(c) follows from Q1 and 2c¢ directly. (d). The first part follows from the second derivative test for
concavity. For the second part, g is not concave on R. It is evident by look at the graph.

3. In this exercise, we would be showing the Holder’s inequality: that is, let p,q > 1 be having the property
that p~! + ¢~ = 1 (we say that p,q are conjugate exponents of each other). Then for all finite list of
real numbers (z;)¥_; and (y;)%_;, we have

k k k
D ol < O lwilH)VPQ fwal )M
i=1 i=1 i=1

Observe that this is a generalization to the Cauchy-Schwarz inequality where p = g = 2.

(a) Show that x — exp(x) is a convex function on R.

1

(b) Using the above convexity, show that for all 7,5 > 0 and p,q > 1 with p~! + ¢! = 1, we have

This is called the Young’s inequality.

(¢) Prove the Holder’s inequality.
(Hint: Consider the normalized case first, that is, the case where Zle |z;|P = Zle lyi|Y =1)

Solution. (a). Consider the 2nd derivative. (b). The case for r = 0 or s = 0 is trivial. Suppose
r,s > 0. Then 7P, s? > 0. Find x1, 2o such that exp(x1) = r? and exp(xy) = s9. Take t = 1/p. Then
exp(tzy + (1 — t)a?) < texp(z1) + (1 —t) exp(x2), which gives the Young’s inequality.

(c). The normalized case is easy. For the general case, suppose x,y # 0 € RF. Consider 2’ := z/|zll,
and y' == y/[y[|, where [[z], := (Zf:l |z;|*)!/* for s > 1 and = € R*. Applying the normarlized case to
2/, y’ yields the answer.
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4. This is a follow-up to Question 3. Let k € N and p > 1. Let x = (21, - ,2;) € RF. We can define
Iz, == (zle |2;[P)/P, called the p—norm of z. We are going to show that [, satisty the triangle
inequality.

(a) Show that for all « € R, we have [lazx||, = |a||z]|, for all x € REF.
(b) Show that ||z[|, = 0 if and only if z = 0.

c¢) Using the Holder’s inequality, show that ||z +y||, < |||, + |ly||, for all 2,y € R¥, that is, write
P P P
x=(x1, - ,xr) and y = (y1,- - ,Yk), then we have

k k k
Sl + w7 < (O )P+ (3 i)
i=1 =1 =1

(Hint: Write |z; + y;|* = |z; + yi|p_1|xi + y;| and try to see what the conjugate exponent of p is)

Solution. (a) and (b) are standard. (c) basically follows from the hint. Observe that |z; + ;" <
lzi + yil? | + |2 + yi[P " yi|. Therefore by Holder’s inequality, we have

Sl il < (3 b+l DY )+ (D ) )

where (p — 1)¢ = p. The result follows by dividing both sides by (> |z; + ;1/,,~|<'}7l)(’)l/q

5. This is independent to Q4 but we are making use of the notations there. We are giving a proof for the
triangle inequality of p—norms without using the Holder’s inequality for p > 1.

(a) Let x,y € R*\{0}. Suppose |lz|, + [lyll, = 1. Show that there exists X,Y € R* with || X| =
Y], =1and A € [0,1] such that z = AX and y = (1 - N)Y.

(b) Show the triangle inequality for the case where [|z||, + [ly||, = 1.

(¢) Show the general triangle inequality.

(d) (Reverse triangle inequality). Suppose p € (0,1). Let ,y € R* be with non-negative entries, that

is, we have x;,y; > 0 for all i = 1,--- | k. Then the reverse triangle inequality holds:

k k k

(i ua)?) P > (3 (S )

i=1 i=1 i=1

Solution. (a) is easy and (b) follows directly from convexity. For (c). Suppose x,y € R*. Define
e . ; . ol e, . . \  rea J . RN

z' = z/(||zll, + llyll,) and y" := y/([[z[, + [[y],). Then the result follows from applying part (b) on
2’',y’. For (d), it is simply that convexity is replaced by concavity. Non-negative entries are considered
because z +— |z|” is concave on the non-negative entries only but not the whole real line.

6. Fix k € N. Let 7 € R*. Let p > 0. We define Iz, == (Zle |2 [P)1/P.

(a) Let z € (0,1). Show that a? < 27 for all p > ¢ > 0.

(b) Show that for all z € R*, we have ||x||p < ||x||q for all p > g > 0.
(Hint: Consider the case ||z, =1 first.)

Solution. (a). Show that s — x* is decreasing by considering derivatives. (b). Suppose ||z, = 1. Then
we can WLOG assume z; < 1 for all i (otherwise there would be exactly one entry attaining 1; such
case would be trivial). Tt follows from part (a) that |2;|” < [z;|? and so [|z[|, < 1. For the general case,
consider 2’ := x/[|z||, and apply the normalized case.
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3 Holder’s Continuity and a Nowhere Differentiable Example

Definition 3.1. Let f : I — R be a function on some intervals. Let a € (0,1]. Then we say that f is a—
Holder continuous on I if there exists K > 0 such that |f(z) — f(y)| < K|z — y|® for all z,y € I. Note that
a = 1 is equivalent to the Lipschitz condition.

Quick Practice (Hard)

1. Let a > 1 and f: I — R be a function that is a—Holder continuous. Show that f is a constant function.
This explains why we do not consider a > 1 in the definition of Holder continuity.
Solution. In this case, f is differentiable with 0 derivatives. It follows from the MVT that f is a
constant.

2. Let « € (0,1]. Define f(z) := z* on [0, 00).

(a) Show that f is a— Hélder continuous on [0, 00)
(b) Show that f is not S— Holder continuous for all 8 # « on [0, 00) with 8 € (0, 1].
(¢) Show that f is S— Holder continuous for all 0 < f < awon A C [0,00) where A is bounded.

Solution. (a). We have to show that z¢ — y* < (z — y)® for @ € (0,1] and x > y > 0. Take
z = (z —y,y) € R% Then it follows from convexity results that ||z[|; < [/z|,. This implies that
lz —y| + |y < ((x —y)* + y*)/*. The result follows as = > y > 0. (b). Consider z, := n and
T = 1/n with y := 0 for 8 < « and 8 > « respectively. (c). Note that |z —y|” = |z — ,l/\(‘i";\:lr — Z!/‘d <
(2sup(A)*Blz —y|® as a — B > 0.

3. Let f: I — R be a function over some interval I.

(a) Show that f is uniformly continuous if f is a—Hélder continuous for some « € (0, 1].

(b) Show that the converse is not true: there exists a uniformly continuous function that is not a—Holder
continuous for all a € (0, 1].
(Hint: Consider f :[0,1/2] — R defined by f(x) :=1/log(x) for x > 0 with f(0):=0)

Solution. (a) is easy. (b). Use L’Hospital Rule.

4. Let f:]0,1] — R be a function. We say that f is locally a—Hdélder continuous (« € (0,1]) at x € [0, 1]
if there exists r > 0 such that f |p, (2)n[0,1] is @—HOolder continuous. We use the term locally Lipschitz
for the case o = 1.

(a) Show that f is a Lipschitz function on [0, 1] if and only if f is locally Lipschitz at « for all z € [0, 1].

(b) Show that f is a—Holder continuous on [0, 1] if and only if f is locally a—Hélder continuous at x
for all z € [0,1

]
Solution. (a) and (b) are similar: make use of the compactness property of [0,1]. For (a). («<). Note
that [0,1] C |J, B, (z) is an open cover. Therefore, there exists 21, - - - , 2, such that [0,1] C [J!; By ().
Next let x,y € [0,1]. Then there exists a path to,--- ,t with to := z to ty := y with ¢;,t;_1 € B, ()
for some 1 < j < n and length & < n. (Otherwise there would be contradiction to connectedness of
intervals). It then follows from triangle inequality that | f(z) — f(y)| < nmax; Lip(f
Lip denotes the Lipschitz constant.

/;,.(;,,-,))\;1,' — y| where

5. Let f:[0,1] — R be a function with f(0) = f(1). Then we call f : R — R the periodic extension of f if

ft+n)= f(t) for all t € [0,1] and n € Z.

(a) (20-212050 Rev. Exercise) Suppose f is continuous. Show that the periodic extension f is uniformly
continuous.

(b) Suppose f is L—Lipschitz. Show that the extension f is also L—Lipschitz. (f is L—Lipschitz if
|f(x) = f(y)| < Llz — y| for all possible z,y)

(c) Suppose f is a—Hélder continuous with a € (0,1]. Is it true that the periodic extension f is also
a—Holder continuous?

Solution. All share similar techniques. Please refer to the quoted Exercise for part (a) and Q4.
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=n/2 Z i
6. (Very challenging). Let f : [0,1] — R be a function defined by f(z) := 0 z=n/2, ne ?s U and
1 z=n/2, n€Zis odd
extending linearly in between. Let f; : R — R be the periodic extension of f to R. It is not hard to see
that f; is given by the same defining formula as f (with a different domain). Now define for all k € N

that fi,(t) ;== 27F+1f1 (25~ 1¢) for all t € R.

(a) Show and convince yourself that for all k£ € N, we have

0 r=n/2% n€Zis even
fk(x) = — k1 o k .
2 x=n/2" n€Zis odd

with other values given by the linear extensions between the defined dyadic points.

(b) Show that for all k € N, fj consists of straight lines of slopes 4-1 with horizontal length 1/2*.
Furthermore, f, are periodic with period 1/2F71.

(c) Fix z € R. Note that fi(z) > 0 for all k € N. Define F(z) := > o0, fi(z) := lim, ., fi(z) €
[0,00]. Show that for all dyadic number x € R (that is, x = k/2™ for some k € Z and m € N) we
have that F'(z) is a finite sum. Moreover, show that F(z) < oo for all x € R.

(d) Show that for all z € R and k € N, there exists hy, € {£1/2F"1} such that |f.(z + hi) — fr(z)| =
|hi| with additional facts that
i |fi(z+ hg) — fi(x)| = |hg| for all i < k € N.
ii. |fi(x+hg)— filx)]=0foralli>k+2€eN.
(e) Show that F(z):= > .2, fi(x) is nowhere differentiable on R, that is, F' is not differentiable for all
r R

(f) (Hard) Show that F' is not Lipschitz but F' is a—Holder continuous for all o € (0,1).

Solution. Please refer to Appendex E of the textbook for part (a) to (e). We give only the solution
to (f). Note that one should have shown also in part (e) that F' is not Lipschitz. It remains to show
that F' is a-Holder continuous for all a € (0,1). Note that by Question 4, 5, it suffices to show that
F is locally a—Holder continuous on [0,1]. To this end, let o € (0,1). Let € [0,1] and h € (0,27%).
Suppose also that  + h € [0,1]. We want to show that there exists K > 0 independent of h such
that |F(x+ h) — F(z)] < K|h|®. To proceed, define n := min{j € N : h > 1/2/%2} > 2. Then
2-(n+2) < p < 2=(n+1)  Note that 27 ("1 is the horizontal length of the lines of the graph of f,. It
follows that we have

|F(z+ h) — |<Z\f (z+h) — fi(a pZ\f (@ +h) = fi(@)| + Y| fi(z+ ) — fi(2)]

1>n
<Zl h—i—Z‘)fz—}———nh—&—Q

i>n

in which we have used the fact that f; are 1-Lipschitz. Notice that from 2~ ("2 < b < 2=("+1) we have
27" < 4h and 2h < 27". From the latter we also have n < —1 — log, h. It follows that we have
|F(x+h) — F(z)| <nh+2-27" < (84 n)h < (7—logy h)h = (7 —logy h)h* = - h®

Note that the expression (7 —logy h)h!~ is bounded by 1 as long as h is small enough since limy,_,o+ (7 —

logy h)h! =% = 0 by the L’Hospital Rule. It follows that F is locally a—Hdlder continuous for all z € [0, 1]
by considering a small enough neighborhood (with diameter 274 > h > 0 small enough such that
(7 —logy h)h1=® < 1), which is independent of the point.

7. This is a follow-up to Question 6. Using the same periodic function f; defined in the previous question,
we define gx(t) := aF~1 f1(2571(¢)) for all ¢ € R where a € (0,1) with 2a > 1. Define G(t) := Y i, gi(t).

(a) Show that G is well-defined,
(b) Show that G is nowhere differentiable.
(c) Show that G is a-Hdlder continuous with o = —log,(a)

Solution. All are similar to Q6.
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