Unless otherwise specified, we always use I to denote an open interval; logarithmic expressions (with log) are in the natural base. If we write (a, b) or [a, b], it is always the case that $a < b \in \mathbb{R}$.

1 L'Hospital's Rule

Theorem 1.1 (Generalized Cauchy Mean Value Theorem). Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions that are differentiable on (a, b). Suppose $g'(x) \neq 0$ for all $x \in (a, b)$. Then there exists $c \in (a, b)$ such that

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

Theorem 1.2 (L'Hospital Rule). Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions that are differentiable on (a, b)where $-\infty \le a < b \le \infty$ (turn closed brackets to open brackets for $\pm \infty$). Suppose $g'(x) \ne 0$ for all $x \in (a, b)$. Further suppose $L := \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ exists. Then we have

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$$

if either of the following is satisfied:

a)
$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$$

b) $\lim_{x \to a^+} g(x) = \infty$ or $\lim_{x \to a^+} g(x) = -\infty$

Similar statements can be made for left-handed limits and two-sided limits.

Quick Practice

- 1. Let $f:(a,b)\to\mathbb{R}$ be differentiable. Suppose $f'(x)\neq 0$ for all $x\in(a,b)$. Show that
 - (a) f is injective.
 - (b) Suppose f'(c) > 0 for some $c \in (a, b)$. Then f is strictly increasing.
- 2. Let $f, g: (a, b) \to \mathbb{R}$ be differentiable such that $g'(x) \neq 0$ for all $x \in (a, b)$. Fix $c \in (a, b)$. Suppose $\lim_{x\to c^+} f(x) = \lim_{x\to c^+} g(x) = 0$. Show that the L'Hospital Rule holds, that is, if $L := \lim_{x\to c^+} \frac{f'(x)}{g'(x)}$ exists then $\lim_{x\to c^+} \frac{f(x)}{g(x)} = L$ using the Cauchy Mean Value Theorem.

3. Let
$$f(x) := \begin{cases} x^2 \sin(1/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$
 and let $g(x) := \sin x$ for all $x \in \mathbb{R}$.

- (a) Show that $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$ but $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ does not exist.
- (b) Some says that the above example violates the L'Hospital Rule. Do you agree? Explain your answer.
- 4. Evaluate the following limits:
 - a) $\lim_{x \to 0} \frac{e^x + e^{-x} 2}{1 \cos x}$ b) $\lim_{x \to 0^+} x^3 \log x$ c) $\lim_{x \to \infty} x^3 e^{-x}$
d) $\lim_{x \to 0^+} \sqrt{x} \log(x)$ e) $\lim_{x \to \infty} x^{1/x}$ f) $\lim_{x \to \infty} (1 + 3/x)^x$
- 5. (Very Tricky Question). Let f be differentiable on $(0, \infty)$. Suppose $L := \lim_{x \to \infty} (f(x) + f'(x))$ exists. Show that $\lim_{x \to \infty} f(x) = L$ and $\lim_{x \to \infty} f'(x) = 0$
- 6. Let $f, g: (a, b) \to \mathbb{R}$ be differentiable such that $g'(x) \neq 0$ for all $x \in (a, b)$. Fix $c \in (a, b)$. Prove the L'Hospital Rule under the assumption that $\lim_{x\to c^+} g(x) = \infty$.

2 More on Convex Functions

Definition 2.1. Let $f: I \to \mathbb{R}$ where I is an interval. Then f is a convex function if

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$

for all $x, y \in I$ and $t \in [0, 1]$

Theorem 2.2. Suppose $f: I \to \mathbb{R}$ is twice-differentiable on an open intervals. Then f is convex on I if and only if $f'' \ge 0$ on I.

Quick Practice

1. Let p > 0. Define $f(x) := x^p$ on $(0, \infty)$. Find all values of p such that f is convex on $(0, \infty)$

- 2. Let $f:[0,\infty) \to \mathbb{R}$ be a continuous function.
 - (a) Show that f is convex on $[0,\infty)$ if it is convex on $(0,\infty)$
 - (b) Suppose f is convex, increasing on [0,1]. Define $g : \mathbb{R} \to \mathbb{R}$ by g(x) := f(|x|). Show that g is a convex function.
 - (c) Let $p \ge 1$. Show that $g(x) := |x|^p$ is convex on \mathbb{R} but is not differentiable on \mathbb{R} in general.
 - (d) Let $p \in (0,1)$. Show that $g(x) := |x|^p$ is a concave function on $[0,\infty)$, that is, $g(tx + (1-t)y) \ge tg(x) + (1-t)g(y)$ for all $x, y \in [0,\infty)$ and $t \in [0,1]$. Is it true that g is concave on \mathbb{R} ?

3. In this exercise, we would be showing the Hölder's inequality: that is, let $p, q \ge 1$ be having the property that $p^{-1} + q^{-1} = 1$ (we say that p, q are conjugate exponents of each other). Then for all finite list of real numbers $(x_i)_{i=1}^k$ and $(y_i)_{i=1}^k$, we have

$$\sum_{i=1}^{k} |x_i y_i| \le (\sum_{i=1}^{k} |y_i|^p)^{1/p} (\sum_{i=1}^{k} |x_i|^q)^{1/q}$$

Observe that this is a generalization to the Cauchy-Schwarz inequality where p = q = 2.

- (a) Show that $x \mapsto \exp(x)$ is a convex function on \mathbb{R} .
- (b) Using the above convexity, show that for all $r, s \ge 0$ and $p, 1 \ge 1$ with $p^{-1} + q^{-1} = 1$, we have

$$rs \le \frac{r^p}{p} + \frac{s^q}{q}$$

This is called the Young's inequality.

(c) Prove the Hölder's inequality. (*Hint: Consider the normalized case first, that is, the case where* $\sum_{i=1}^{k} |x_i|^p = \sum_{i=1}^{k} |y_i|^q = 1$)

- 4. This is a follow-up to Question 3. Let $k \in \mathbb{N}$ and $p \ge 1$. Let $x = (x_1, \dots, x_k) \in \mathbb{R}^k$. We can define $\|x\|_p := (\sum_{i=1}^k |x_i|^p)^{1/p}$, called the *p*-norm of *x*. We are going to show that $\|\cdot\|_p$ satisfy the triangle inequality.
 - (a) Show that for all $\alpha \in \mathbb{R}$, we have $\|\alpha x\|_p = |\alpha| \|x\|_p$ for all $x \in \mathbb{R}^k$.
 - (b) Show that $||x||_p = 0$ if and only if x = 0.
 - (c) Using the Hölder's inequality, show that $||x + y||_p \leq ||x||_p + ||y||_p$ for all $x, y \in \mathbb{R}^k$, that is, write $x = (x_1, \dots, x_k)$ and $y = (y_1, \dots, y_k)$, then we have

$$\left(\sum_{i=1}^{k} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{k} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{k} |y_i|^p\right)^{1/p}$$

(*Hint:* Write $|x_i + y_i|^p = |x_i + y_i|^{p-1} |x_i + y_i|$ and try to see what the conjugate exponent of p is)

- 5. This is independent to Q4 but we are making use of the notations there. We are giving a proof for the triangle inequality of p-norms without using the Hölder's inequality for $p \ge 1$.
 - (a) Let $x, y \in \mathbb{R}^k \setminus \{0\}$. Suppose $||x||_p + ||y||_p = 1$. Show that there exists $X, Y \in \mathbb{R}^k$ with $||X||_p = ||Y||_p = 1$ and $\lambda \in [0, 1]$ such that $x = \lambda X$ and $y = (1 \lambda)Y$.
 - (b) Show the triangle inequality for the case where $||x||_p + ||y||_p = 1$.
 - (c) Show the general triangle inequality.
 - (d) (Reverse triangle inequality). Suppose $p \in (0, 1)$. Let $x, y \in \mathbb{R}^k$ be with non-negative entries, that is, we have $x_i, y_i \ge 0$ for all $i = 1, \dots, k$. Then the reverse triangle inequality holds:

$$\left(\sum_{i=1}^{k} (x_i + y_i)^p\right)^{1/p} \ge \left(\sum_{i=1}^{k} x_i^p\right)^{1/p} + \left(\sum_{i=1}^{k} y_i^p\right)^{1/p}$$

- 6. Fix $k \in \mathbb{N}$. Let $x \in \mathbb{R}^k$. Let p > 0. We define $||x||_p := (\sum_{i=1}^k |x_i|^p)^{1/p}$.
 - (a) Let $x \in (0,1)$. Show that $x^p \le x^q$ for all $p \ge q > 0$.
 - (b) Show that for all $x \in \mathbb{R}^k$, we have $\|x\|_p \leq \|x\|_q$ for all $p \geq q > 0$. (*Hint: Consider the case* $\|x\|_q = 1$ first.)

3 Hölder's Continuity and a Nowhere Differentiable Example

Definition 3.1. Let $f : I \to \mathbb{R}$ be a function on some intervals. Let $\alpha \in (0, 1]$. Then we say that f is α -Hölder continuous on I if there exists K > 0 such that $|f(x) - f(y)| \le K|x - y|^{\alpha}$ for all $x, y \in I$. Note that $\alpha = 1$ is equivalent to the Lipschitz condition.

Quick Practice (Hard)

- 1. Let $\alpha > 1$ and $f: I \to \mathbb{R}$ be a function that is α -Hölder continuous. Show that f is a constant function. This explains why we do not consider $\alpha > 1$ in the definition of Hölder continuity.
- 2. Let $\alpha \in (0,1]$. Define $f(x) := x^{\alpha}$ on $[0,\infty)$.
 - (a) Show that f is α Hölder continuous on $[0, \infty)$
 - (b) Show that f is not β Hölder continuous for all $\beta \neq \alpha$ on $[0, \infty)$ with $\beta \in (0, 1]$.
 - (c) Show that f is β -Hölder continuous for all $0 < \beta \leq \alpha$ on $A \subset [0, \infty)$ where A is bounded.
- 3. Let $f: I \to \mathbb{R}$ be a function over some interval I.
 - (a) Show that f is uniformly continuous if f is α -Hölder continuous for some $\alpha \in (0, 1]$.
 - (b) Show that the converse is not true: there exists a uniformly continuous function that is $not \alpha$ -Hölder continuous for all $\alpha \in (0, 1]$.

(Hint: Consider $f:[0,1/2] \to \mathbb{R}$ defined by $f(x) := 1/\log(x)$ for x > 0 with f(0) := 0)

- 4. Let $f: [0,1] \to \mathbb{R}$ be a function. We say that f is locally α -Hölder continuous ($\alpha \in (0,1]$) at $x \in [0,1]$ if there exists r > 0 such that $f \mid_{B_r(x) \cap [0,1]}$ is α -Hölder continuous. We use the term *locally Lipschitz* for the case $\alpha = 1$.
 - (a) Show that f is a Lipschitz function on [0, 1] if and only if f is locally Lipschitz at x for all $x \in [0, 1]$.
 - (b) Show that f is α -Hölder continuous on [0,1] if and only if f is locally α -Hölder continuous at x for all $x \in [0,1]$
- 5. Let $f: [0,1] \to \mathbb{R}$ be a function with f(0) = f(1). Then we call $\overline{f}: \mathbb{R} \to \mathbb{R}$ the periodic extension of f if $\overline{f}(t+n) = f(t)$ for all $t \in [0,1]$ and $n \in \mathbb{Z}$.
 - (a) (20-21 2050 Rev. Exercise) Suppose f is continuous. Show that the periodic extension \overline{f} is uniformly continuous.
 - (b) Suppose f is L-Lipschitz. Show that the extension \overline{f} is also L-Lipschitz. (f is L-Lipschitz if $|f(x) f(y)| \le L|x y|$ for all possible x, y)
 - (c) Suppose f is α -Hölder continuous with $\alpha \in (0, 1]$. Is it true that the periodic extension \overline{f} is also α -Hölder continuous?

- 6. (Very challenging). Let $f:[0,1] \to \mathbb{R}$ be a function defined by $f(x) := \begin{cases} 0 & x = n/2, n \in \mathbb{Z} \text{ is even} \\ 1 & x = n/2, n \in \mathbb{Z} \text{ is odd} \end{cases}$ and extending linearly in between. Let $f_1: \mathbb{R} \to \mathbb{R}$ be the periodic extension of f to \mathbb{R} . It is not hard to see that f_1 is given by the same defining formula as f (with a different domain). Now define for all $k \in \mathbb{N}$ that $f_k(t) := 2^{-k+1}f_1(2^{k-1}t)$ for all $t \in \mathbb{R}$.
 - (a) Show and convince yourself that for all $k \in \mathbb{N}$, we have

$$f_k(x) := \begin{cases} 0 & x = n/2^k, \ n \in \mathbb{Z} \text{ is even} \\ 2^{-k+1} & x = n/2^k, \ n \in \mathbb{Z} \text{ is odd} \end{cases}$$

with other values given by the linear extensions between the defined dyadic points.

- (b) Show that for all $k \in \mathbb{N}$, f_k consists of straight lines of slopes ± 1 with horizontal length $1/2^k$. Furthermore, f_k are periodic with period $1/2^{k-1}$.
- (c) Fix $x \in \mathbb{R}$. Note that $f_k(x) \ge 0$ for all $k \in \mathbb{N}$. Define $F(x) := \sum_{i=1}^{\infty} f_i(x) := \lim_n \sum_{i=1}^n f_i(x) \in [0,\infty]$. Show that for all dyadic number $x \in \mathbb{R}$ (that is, $x = k/2^m$ for some $k \in \mathbb{Z}$ and $m \in \mathbb{N}$) we have that F(x) is a finite sum. Moreover, show that $F(x) < \infty$ for all $x \in \mathbb{R}$.
- (d) Show that for all $x \in \mathbb{R}$ and $k \in \mathbb{N}$, there exists $h_k \in \{\pm 1/2^{k+1}\}$ such that $|f_k(x+h_k) f_k(x)| = |h_k|$ with additional facts that
 - i. $|f_i(x+h_k) f_i(x)| = |h_k|$ for all $i \le k \in \mathbb{N}$.
 - ii. $|f_i(x+h_k) f_i(x)| = 0$ for all $i \ge k+2 \in \mathbb{N}$.
- (e) Show that $F(x) := \sum_{i=1}^{\infty} f_i(x)$ is nowhere differentiable on \mathbb{R} , that is, F is not differentiable for all $x \in \mathbb{R}$.
- (f) (Hard) Show that F is not Lipschitz but F is α -Hölder continuous for all $\alpha \in (0, 1)$.

- 7. This is a follow-up to Question 6. Using the same periodic function f_1 defined in the previous question, we define $g_k(t) := a^{k-1} f_1(2^{k-1}(t))$ for all $t \in \mathbb{R}$ where $a \in (0, 1)$ with 2a > 1. Define $G(t) := \sum_{i=1}^{\infty} g_i(t)$.
 - (a) Show that G is well-defined,
 - (b) Show that G is nowhere differentiable.
 - (c) Show that G is α -Hölder continuous with $\alpha = -\log_2(a)$