
2021 - 2022 MATH2068 Tutorial 2 - Mean Value Theorem and Taylor’s Theorem (With Solutions)

Unless otherwise specified, we always use I to denote an open interval. If we write (a, b) or [a, b], it is
always the case that a < b ∈ R.

1 Mean Value Theorem

Theorem 1.1 (Mean Value Theorem). Let f : [a, b] → R be continuous. Suppose f is differentiable on (a, b).
Then there exists c ∈ (a, b) such that f(b) − f(a) = f ′(c)(b − a). In particular, if f : I → R is differentiable,
then for all x < y ∈ I, there exists ξ ∈ (x, y) such that f(y)− f(x) = f ′(ξ)(y − x).

Proposition 1.2 (Derivative of local extrema). Let f : I → R. Suppose f is differentiable and f is a local
maximum at c, that is, f(c) ≥ f(x) for all x ∈ Br(c) for some r > 0. Then f ′(c) = 0.

Quick Practice

1. Show that if f : I → R is differentiable such that f ′ ≡ 0 on I, then f is a constant on I.

Solution. Let x < y ∈ I. Then f(x) − f(y) = f ′(ξ)(x − y) = 0 for some ξ ∈ (x, y). It follows that
f(x) = f(y) for all x < y. In particular f is constant on I.

2. Let f : I → R be a differentiable function.

(a) Suppose f ′ ≥ 0 on I. Show that f is an increasing function, that is, f(x) ≥ f(y) for all x ≥ y ∈ I.

(b) Suppose f ′ > 0 on I. Is it true that f ′ is a strictly increasing function, that is, f(x) > f(y) for all
x > y ∈ I? Give counterexamples whenever necessary.

Solution. Both parts are similar. We shall do part 2(b) only: it is true. Let x > y ∈ I. Then
f(x)−f(y) = f ′(ξ)(x−y) for ξ ∈ (y, x) by MVT. Since f ′(ξ) > 0 and x−y > 0, we have f(x)−f(y) > 0
and so f(x) > f(y)

Remark. The converse of (a) is correct while the converse of (b) is incorrect. For the latter, consider
f(x) := x3 for x ∈ R

3. Let f(x) := sin(x) for all x ∈ R. Show that f is a 1-Lipschitz function on R, that is, |f(x)− f(y)| ≤
|x− y| for all x, y ∈ R.
Solution. Note that f ′(x) = cos(x) for all x ∈ R. Let x < y ∈ R, by MVT, we have |f(x)− f(y)| =
|cos(ξ)||x− y| ≤ |x− y|.

4. Let f : I → R for all x ∈ R. Suppose f is differentiable and f ′ is bounded on I.

(a) Show that f is Lipschitz on I.

(b) Show that if |f ′| ≤ M on I for M > 0. Then f is a M−Lipschitz function.

(c) (Repeat) Suppose f is differentiable. Is it true that f is Lipschitz if and only if f ′ is bounded. Prove
your assertion.

(d) (Repeat) Give an example such that f is differentiable but is not Lipschitz.

Solution. (a) and (b). Let x, y ∈ I. By MVT, |f(x)− f(y)| = |f ′(ξ)||x− y| ≤ M |x− y| where |f ′| ≤ M
on I. It follows that f is M−Lipschitz.
(c). Only (⇒) has not been proved: fix c ∈ I. Then for all x ̸= c ∈ I, we have |f(x)− f(c)| ≤ L|x− c|
where L is the Lipschitz-constant. It follows that |f ′(c)| = limx→c

∣∣∣ f(x)−f(c)
x−c

∣∣∣ ≤ L. Since c is arbitrary,

we have |f ′| ≤ L.
(d). Consider any f with f ′ unbounded.

5. Define f(x) := ex for all x ∈ R. Show that f is not Lipschitz on R. Nevertheless, f is Lipschitz for all
on (−∞, t) for all t > 0.

Solution. Note that f ′(x) = ex for all x ∈ R. f is not Lipschitz on R because f ′ is unbounded on R.
Nevertheless, fix t > 0 then f is Lipschitz on (−∞, t) because f ′ is bounded with |f ′| ≤ et.
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2 Taylor’s Theorem

Theorem 2.1 (Taylor’s Theorem). Let f : I → R be (n + 1)−times differentiable for n ≥ 0. Then for all
x < y ∈ I, there exists ξ ∈ (x, y) such that

f(y)− f(x) =

n∑
i=1

f (n)(x)

n!
(y − x)n +

fn+1(ξ)

(n+ 1)!
(y − x)(n+1)

Quick Practice

1. (Ex6.4 Q4) Let x > 0. Show that 1 + x/2− x2/8 ≤
√
1 + x ≤ 1 + x/2

Solution. Homework candidate: skip.

2. (Ex 6.4 Q13) Calculate e, correct to 7 decimal places.

Solution. Consider f(t) := et with x = 1 and y = 2 (using the notations above). Use the nth Taylor’s

polynomial to approximate where e2

(n+1)! ≤ 5× 10−8.

3. Let f : I → R. Suppose f is twice differentiable on I. Show that f (2) ≥ 0 on I if and only if f is convex,
that is, f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ I and t ∈ [0, 1]

Solution. See Lecture Notes. Hint: One technique for dealing with convexity is to work with z ∈ [x, y]
instead of tx+ (1− t)y where t ∈ [0, 1]. Note that there is a bijection between z ∈ [x, y] and t ∈ [0, 1] by
t 7→ tx+ (1− t)y ∈ [x, y].

3 Extra Exercises

1. Let f : I → R be differentiable.

(a) Show that if f ′ has a right-limit at c ∈ I, then f ′ is right-continuous at c, that is, if limx→c+ f ′(x) ∈ R
then f ′(c) = limx→c+ f ′(x).

(b) Suppose f ′ is increasing. Show that f ′ is continuous.

Solution. (a). Let x > c ∈ I. Then f(x)− f(c) = f ′(ξ(x))(x− c) where ξ(c) ∈ (c, x). Then f ′(ξ(x)) =
f(x)−f(c)

x−c . Now we consider x → c+ on both side. For the right expression, limx→c+
f(x)−f(c)

x−c = f ′(c) as
f is differentiable at c. For ther left expression, we have to show that limx→c+ f ′(ξ(x)) = limx→c+ f(x).
Write L := limx→c+ f(x). Let ϵ > 0. Then there exists δ > 0 such that x − c < δ would imply
|f(x)− L| < ϵ. Note that if x− c < δ then ξ(x)− c < x− c < δ. In particular, we have |f(ξ(x))− L| < ϵ.
It follows that limx→c+ f ′(ξ(x)) = L.
(b). First note that clearly part (a) is still true if we replace ”right” by ”left”. Note that an increasing
function on I has both left and right limits at all points on I by considering supremums and infimums.
It follows that if f ′ is increasing then f ′ is both left and right continuous at all points. In particular, f
is continuous at all points.

2. (Modified) Suppose f : I → R. We say that f is locally strictly increasing at c ∈ I if there exists r > 0
such that f is strictly increasing on Br(c) ⊂ I. Suppose f is differentiable such that f ′ is continuous,
i.e. f ∈ C1(I).

(a) Show that if f ′(c) > 0 then f is locally strictly increasing at c.

(b) Is the converse of the above true? Prove your assertion.

(c) Show that if f is locally increasing at c, that is, f is increasing on Br(c) for some r > 0 (with partial
inequality), then f ′(c) ≥ 0.

(d) Suppose f ′(c) ≥ 0. Is it true that f is locally increasing at c? Prove your assertion.

(e) Suppose now f is differentiable but f ′ may not be continuous. Do statements in (a) - (d) still hold
or not?

Solution. (a). Note f ′ > 0 on Br(c) for some r > 0 by continuity. Hence the result follows from MVT on

Br(c). (b) is not by considering f(x) := x3 as in the first page. (c). It is easy to see that f(x)−f(c)
x−c ≥ 0

on x ∈ Br(c)\{c}. The result follows by taking limit. (d). It is not true. Consider f(x) = x2 then
f ′(0) = 0 but f is not locally increasing at 0.
(e). The same proof and examples apply for (b), (c), (d). For (a), the function g(x) := x+ 2x2 sin(1/x)
for x ̸= 0 and g(0) = 0 gives a counter example. (cf. textbook P. 179 Q10)
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3. Let f : I → R be a function. We say that f has the Intermediate Value Property if for all x, y ∈ I such
that f(x) < f(y) and for all t ∈ [f(x), f(y)], there exists z ∈ [x, y] or z ∈ [y, x] such that f(z) = t.

(a) Show that if f is a continuous function, then f has the Intermediate Value Property.

(b) Suppose f is differentiable on I. Suppose further that x < y ∈ I such that f ′(x) < 0 < f ′(y). Show
that there exists z ∈ (x, y) such that f ′(z) = 0.

(c) Suppose f is differentiable. Show that f ′ has the Intermediate Value Property.

(d) Find a non-continuous function that has the Intermediate Value Property.

Solution. Read the Darboux’s Theorem in textbook for details. It is interesting to note that there exists
a function that is nowhere continuous but satisfy the Intermediate Value Property. See the Wikipage of
the Conway Base 13 function.

4. Let f : [0,∞) be a function. Let t > 0. We call a finite list of points {ai}ni=−0 a partition of [0, t] if
0 = a0 < a1 < · · · < an := t. We define

Vf (t) := V ([0, t]) := sup{
n∑

i=1

|f(ai)− f(ai−1)| : {ai}ni=0 is a partition of [0, t]}

Note that Vf (t) ∈ [0,∞] can take value +∞. We call f to be of finite variation if Vf (t) < ∞ for all t ≥ 0.

(a) Suppose f ∈ C1([0,∞). Show that f is of finite variation.

(b) Suppose f ∈ C1([0,∞). Show that f is the sum of two monotone functions.
(Hint: Show that t 7→ Vf (t) is an increasing function on [0,∞)).

Solution. (a). Use the fact that f ′ is continuous (by definition) on [0, t] for t > 0 and so f ′ is bounded
on [0, t]. Therefore f is Lipschitz on [0, t]. Then one can proceed by using the triangle inequality.
(b). The decomposition f(t) = Vf (t)+(f−Vf )(t) is the required sum. Note that Vf (t) and (f−Vf )(t) :=
f(t)− Vf (t) are both monotone.

5. Let f : I → R be a function.

(a) Show that f is convex if and only if for all finite list {λi}ni=1 ⊂ [0, 1] and {xi}ni=1 ⊂ I such that∑n
i=1 λi = 1, we have

f(

n∑
i=1

λixi) ≤
n∑

i=1

λif(xi)

(b) Show that for all n ∈ N and {xi}ni=1 ⊂ R>0. We have (x1 · · ·xn)
1/n ≤ x1 + · · ·+ xn

n

Solution. (a). By a standard induction argument.
(b). Note that ex is convex by the second derivative test. Write xi = elog(xi) and λi := 1/n for all
i = 1, · · · , n and n ∈ N. Then apply part (a) on the convexity of ex.
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