2021 - 2022 MATH2068 Tutorial 2 - Mean Value Theorem and Taylor’s Theorem (With Solutions)

Unless otherwise specified, we always use I to denote an open interval. If we write (a,b) or [a,b], it is
always the case that a < b € R.

1 Mean Value Theorem

Theorem 1.1 (Mean Value Theorem). Let f : [a,b] — R be continuous. Suppose f is differentiable on (a,b).
Then there exists ¢ € (a,b) such that f(b) — f(a) = f'(c)(b— a). In particular, if f: I — R is differentiable,
then for all x <y € I, there exists & € (x,y) such that f(y) — f(z) = f'(&)(y — x).

Proposition 1.2 (Derivative of local extrema). Let f : I — R. Suppose f is differentiable and f is a local
mazimum at ¢, that is, f(c) > f(z) for all x € B,.(c) for some r > 0. Then f'(c) = 0.

Quick Practice

1.

Show that if f: I — R is differentiable such that f’ =0 on I, then f is a constant on I.

Solution. Let x < y € I. Then f(x) — f(y) = f(§)(x —y) = 0 for some £ € (x,y). It follows that
f(x) = f(y) for all z < y. In particular f is constant on I.

Let f: I — R be a differentiable function.

(a) Suppose f’ > 0 on I. Show that f is an increasing function, that is, f(x) > f(y) for all z > y € I.

(b) Suppose f' > 0 on I. Is it true that f’ is a strictly increasing function, that is, f(z) > f(y) for all
x >y € I7 Give counterexamples whenever necessary.

Solution. Both parts are similar. We shall do part 2(b) only: it is true. Let « > y € I. Then
f@)—=fly) = f'(&)(x—y) for £ € (y,z) by MVT. Since f'(£) > 0 and 2 —y > 0, we have f(z)— f(y) >0
and so f(z) > f(y)

Remark. The converse of (a) is correct while the converse of (b) is incorrect. For the latter, consider
flz)=a3forz eR

Let f(z) := sin(z) for all x € R. Show that f is a 1-Lipschitz function on R, that is, |f(z) — f(y)| <
|z —y| for all z,y € R.

Solution. Note that f/(z) = cos(z) for all z € R. Let z < y € R, by MVT, we have |f(z) — f(y)| =
cos(§)[|x —y| < |z —yl.

Let f: I — R for all z € R. Suppose f is differentiable and f’ is bounded on I.

(a) Show that f is Lipschitz on I.
(b) Show that if |f'| < M on I for M > 0. Then f is a M —Lipschitz function.

(c) (Repeat) Suppose f is differentiable. Is it true that f is Lipschitz if and only if f is bounded. Prove
your assertion.

(d) (Repeat) Give an example such that f is differentiable but is not Lipschitz.

Solution. (a) and (b). Let z,y € I. By MVT, |f(x) — f(y)| = |/ (&)||x — y| < M|z — y| where |f'| < M
on I. It follows that f is M —Lipschitz.

(¢). Only (=) has not been proved: fix ¢ € I. Then for all x # ¢ € I, we have |f(z) — f(¢)| < L|z — ¢|
f@)=f(e)

where L is the Lipschitz-constant. It follows that |f’(c)| = lim,_,. o < L. Since c is arbitrary,
we have |f'| < L.

(d). Consider any f with f’ unbounded.

Define f(x) := e® for all z € R. Show that f is not Lipschitz on R. Nevertheless, f is Lipschitz for all
on (—oo,t) for all t > 0.

Solution. Note that f/(z) = e® for all z € R. f is not Lipschitz on R because [’ is unbounded on R.
Nevertheless, fix ¢ > 0 then f is Lipschitz on (—oc,t) because f’ is bounded with |f/| < e.
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Taylor’s Theorem

Theorem 2.1 (Taylor’s Theorem). Let f : I — R be (n + 1)—times differentiable for n > 0. Then for all
x <y €I, there exists £ € (xz,y) such that

n (n) T n+1
1)~ 1) =3 - a4 T -y
=1 : ’

Quick Practice

1.

(Ex6.4 Q4) Let = > 0. Show that 1 +z/2 —22/8 < /1 +x <1+ z/2

Solution. Homework candidate: skip.

(Ex 6.4 Q13) Calculate e, correct to 7 decimal places.

Solution. Consider f() := e® with x = 1 and y = 2 (using the notations above). Use the nth Taylor’s

. - T € ; . e = -8
polynomial to approximate where gt <9 X 10=°.

. Let f : I — R. Suppose f is twice differentiable on I. Show that f(2) > 0 on I if and only if f is convex,

that is, f(tz + (1 —t)y) <tf(z)+ (1 —t)f(y) for all z,y € I and ¢ € [0,1]

Solution. See Lecture Notes. Hint: One technique for dealing with convexity is to work with z € [z, y]
instead of tz + (1 — t)y where ¢ € [0,1]. Note that there is a bijection between z € [z, y] and ¢ € [0, 1] by
t—te+ (1 -ty € [z, y].

Extra Exercises

. Let f: I — R be differentiable.

(a) Show that if f/ has a right-limit at ¢ € I, then f” is right-continuous at ¢, that is, if lim,_,.+ f'(z) € R
then f/(c) = lim,_,.+ f'(x).
(b) Suppose f’ is increasing. Show that f’ is continuous.

Solution. (a). Let z > c € I. Then f(z) — f(c) = f'(£(x))(x — ¢) where £(¢) € (¢,x). Then f'({(z)) =
w Now we consider z — ¢T —
f is differentiable at ¢. For ther left expression, we have to show that lim,_, .+ f/(&(x)) = lim,_, .+ f(x).
Write L := lim,_,.+ f(z). Let ¢ > 0. Then there exists 6 > 0 such that x — ¢ < § would imply
|f(z) — L| < e. Note that if z —c¢ < § then £(z) —c¢ < v — ¢ < 4. In particular, we have |f({(z)) — L| < e.
It follows that lim,_,.+ f'(¢(z)) = L.

(b). First note that clearly part (a) is still true if we replace "right” by ”left”. Note that an increasing
function on I has both left and right limits at all points on I by considering supremums and infimums.
It follows that if f/ is increasing then f’ is both left and right continuous at all points. In particular, f
is continuous at all points.

on both side. For the right expression, lim,_, .+ M = f'(c) as

. (Modified) Suppose f : I — R. We say that f is locally strictly increasing at ¢ € I if there exists r > 0

such that f is strictly increasing on B,(c) C I. Suppose f is differentiable such that f’ is continuous,

ie. feCHYI).
(a) Show that if f'(c) > 0 then f is locally strictly increasing at c.

(b) Is the converse of the above true? Prove your assertion.

(¢) Show that if f is locally increasing at ¢, that is, f is increasing on B,.(¢) for some r > 0 (with partial
inequality), then f’(c) > 0.
(d) Suppose f'(c) > 0. Is it true that f is locally increasing at ¢? Prove your assertion.

(e) Suppose now f is differentiable but f’ may not be continuous. Do statements in (a) - (d) still hold
or not?

Solution. (a). Note f' > 0 on B, (c) for some r > 0 by continuity. Hence the result follows from MVT on
B,(c). (b) is not by considering f(x) := 2 as in the first page. (c). It is easy to see that w >0
on x € B.(c)\{c}. The result follows by taking limit. (d). It is not true. Consider f(x) = z? then
77(0) = 0 but f is not locally increasing at 0.

(e). The same proof and examples apply for (b), (c), (d). For (a), the function g(z) := x + 222 sin(1/z)

for 2 # 0 and ¢(0) = 0 gives a counter example. (cf. textbook P. 179 Q10)
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3. Let f: I — R be a function. We say that f has the Intermediate Value Property if for all z,y € I such
that f(z) < f(y) and for all t € [f(x), f(y)], there exists z € [z,y] or z € [y, x] such that f(z) =¢.
(a) Show that if f is a continuous function, then f has the Intermediate Value Property.

(b) Suppose f is differentiable on I. Suppose further that < y € I such that f/'(z) <0 < f'(y). Show
that there exists z € (x,y) such that f'(z) = 0.

(c) Suppose f is differentiable. Show that f’ has the Intermediate Value Property.

(d) Find a non-continuous function that has the Intermediate Value Property.

Solution. Read the Darboux’s Theorem in textbook for details. It is interesting to note that there exists
a function that is nowhere continuous but satisfy the Intermediate Value Property. See the Wikipage of
the Conway Base 13 function.

4. Let f : [0,00) be a function. Let t > 0. We call a finite list of points {a;}}__, a partition of [0,¢] if
0=ag<a; <---<ay:=t We define

Vi(t) == V([0,t]) := sup{z |f(a;) = flai—1)| : {a;}y is a partition of [0,t]}

Note that V¢(t) € [0, 00] can take value +0o. We call f to be of finite variation if V(t) < oo for all ¢ > 0.

(a) Suppose f € C1([0,0). Show that f is of finite variation.

(b) Suppose f € C1([0,0). Show that f is the sum of two monotone functions.
Hint: Show that t — V¢(t) is an increasing function on [0, 00)).
f

Solution. (a). Use the fact that f is continuous (by definition) on [0,¢] for ¢ > 0 and so f’ is bounded
on [0,t]. Therefore f is Lipschitz on [0,¢]. Then one can proceed by using the triangle inequality.

(b). The decomposition f(t) = V;(t)+(f —Vy)(¢) is the required sum. Note that V;(¢) and (f—Vy)(t) :=
f(t) — Vy(t) are both monotone.

5. Let f : I — R be a function.

(a) Show that f is convex if and only if for all finite list {A\;}}; C [0,1] and {x;}}'_; C I such that
Sty A =1, we have

f(z i) < Z Aif ()

(b) Show that for all n € N and {z;}?_, C Rsg. We have (z; ---2,)"/" < S
n
Solution. (a). By a standard induction argument.
(b). Note that e” is convex by the second derivative test. Write ; = €°8() and \; := 1/n for all

i=1,--- ,nand n € N. Then apply part (a) on the convexity of e*.

Prepared by Lam Ka Lok. Updated on 9 February 3


https://en.wikipedia.org/wiki/Conway_base_13_function
https://en.wikipedia.org/wiki/Conway_base_13_function

	Mean Value Theorem
	Taylor's Theorem
	Extra Exercises

