Unless otherwise specified, we always use I to denote an open interval. If we write (a, b) or $[a, b]$, it is always the case that $a<b \in \mathbb{R}$.

1 Mean Value Theorem

Theorem 1.1 (Mean Value Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Suppose f is differentiable on (a, b). Then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$. In particular, if $f: I \rightarrow \mathbb{R}$ is differentiable, then for all $x<y \in I$, there exists $\xi \in(x, y)$ such that $f(y)-f(x)=f^{\prime}(\xi)(y-x)$.
Proposition 1.2 (Derivative of local extrema). Let $f: I \rightarrow \mathbb{R}$. Suppose f is differentiable and f is a local maximum at c, that is, $f(c) \geq f(x)$ for all $x \in B_{r}(c)$ for some $r>0$. Then $f^{\prime}(c)=0$.

Quick Practice

1. Show that if $f: I \rightarrow \mathbb{R}$ is differentiable such that $f^{\prime} \equiv 0$ on I, then f is a constant on I.

Solution. Let $x<y \in I$. Then $f(x)-f(y)=f^{\prime}(\xi)(x-y)=0$ for some $\xi \in(x, y)$. It follows that $f(x)=f(y)$ for all $x<y$. In particular f is constant on I.
2. Let $f: I \rightarrow \mathbb{R}$ be a differentiable function.
(a) Suppose $f^{\prime} \geq 0$ on I. Show that f is an increasing function, that is, $f(x) \geq f(y)$ for all $x \geq y \in I$.
(b) Suppose $f^{\prime}>0$ on I. Is it true that f^{\prime} is a strictly increasing function, that is, $f(x)>f(y)$ for all $x>y \in I$? Give counterexamples whenever necessary.

Solution. Both parts are similar. We shall do part 2(b) only: it is true. Let $x>y \in I$. Then $f(x)-f(y)=f^{\prime}(\xi)(x-y)$ for $\xi \in(y, x)$ by MVT. Since $f^{\prime}(\xi)>0$ and $x-y>0$, we have $f(x)-f(y)>0$ and so $f(x)>f(y)$
Remark. The converse of (a) is correct while the converse of (b) is incorrect. For the latter, consider $f(x):=x^{3}$ for $x \in \mathbb{R}$
3. Let $f(x):=\sin (x)$ for all $x \in \mathbb{R}$. Show that f is a 1-Lipschitz function on \mathbb{R}, that is, $|f(x)-f(y)| \leq$ $|x-y|$ for all $x, y \in \mathbb{R}$.
Solution. Note that $f^{\prime}(x)=\cos (x)$ for all $x \in \mathbb{R}$. Let $x<y \in \mathbb{R}$, by MVT, we have $|f(x)-f(y)|=$ $|\cos (\xi)||x-y| \leq|x-y|$.
4. Let $f: I \rightarrow \mathbb{R}$ for all $x \in \mathbb{R}$. Suppose f is differentiable and f^{\prime} is bounded on I.
(a) Show that f is Lipschitz on I.
(b) Show that if $\left|f^{\prime}\right| \leq M$ on I for $M>0$. Then f is a M-Lipschitz function.
(c) (Repeat) Suppose f is differentiable. Is it true that f is Lipschitz if and only if f^{\prime} is bounded. Prove your assertion.
(d) (Repeat) Give an example such that f is differentiable but is not Lipschitz.

Solution. (a) and (b). Let $x, y \in I$. By MVT, $|f(x)-f(y)|=\left|f^{\prime}(\xi)\right||x-y| \leq M|x-y|$ where $\left|f^{\prime}\right| \leq M$ on I. It follows that f is M-Lipschitz.
(c). Only (\Rightarrow) has not been proved: fix $c \in I$. Then for all $x \neq c \in I$, we have $|f(x)-f(c)| \leq L|x-c|$ where L is the Lipschitz-constant. It follows that $\left|f^{\prime}(c)\right|=\lim _{x \rightarrow c}\left|\frac{f(x)-f(c)}{x-c}\right| \leq L$. Since c is arbitrary, we have $\left|f^{\prime}\right| \leq L$.
(d). Consider any f with f^{\prime} unbounded.
5. Define $f(x):=e^{x}$ for all $x \in \mathbb{R}$. Show that f is not Lipschitz on \mathbb{R}. Nevertheless, f is Lipschitz for all on $(-\infty, t)$ for all $t>0$.
Solution. Note that $f^{\prime}(x)=e^{x}$ for all $x \in \mathbb{R}$. f is not Lipschitz on \mathbb{R} because f^{\prime} is unbounded on \mathbb{R}. Nevertheless, fix $t>0$ then f is Lipschitz on $(-\infty, t)$ because f^{\prime} is bounded with $\left|f^{\prime}\right| \leq e^{t}$.

2 Taylor's Theorem

Theorem 2.1 (Taylor's Theorem). Let $f: I \rightarrow \mathbb{R}$ be $(n+1)$-times differentiable for $n \geq 0$. Then for all $x<y \in I$, there exists $\xi \in(x, y)$ such that

$$
f(y)-f(x)=\sum_{i=1}^{n} \frac{f^{(n)}(x)}{n!}(y-x)^{n}+\frac{f^{n+1}(\xi)}{(n+1)!}(y-x)^{(n+1)}
$$

Quick Practice

1. (Ex6.4 Q4) Let $x>0$. Show that $1+x / 2-x^{2} / 8 \leq \sqrt{1+x} \leq 1+x / 2$

Solution. Homework candidate: skip.
2. (Ex 6.4 Q13) Calculate e, correct to 7 decimal places.

Solution. Consider $f(t):=e^{t}$ with $x=1$ and $y=2$ (using the notations above). Use the nth Taylor's polynomial to approximate where $\frac{e^{2}}{(n+1)!} \leq 5 \times 10^{-8}$.
3. Let $f: I \rightarrow \mathbb{R}$. Suppose f is twice differentiable on I. Show that $f^{(2)} \geq 0$ on I if and only if f is convex, that is, $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$ for all $x, y \in I$ and $t \in[0,1]$
Solution. See Lecture Notes. Hint: One technique for dealing with convexity is to work with $z \in[x, y]$ instead of $t x+(1-t) y$ where $t \in[0,1]$. Note that there is a bijection between $z \in[x, y]$ and $t \in[0,1]$ by $t \mapsto t x+(1-t) y \in[x, y]$.

3 Extra Exercises

1. Let $f: I \rightarrow \mathbb{R}$ be differentiable.
(a) Show that if f^{\prime} has a right-limit at $c \in I$, then f^{\prime} is right-continuous at c, that is, if $\lim _{x \rightarrow c^{+}} f^{\prime}(x) \in \mathbb{R}$ then $f^{\prime}(c)=\lim _{x \rightarrow c^{+}} f^{\prime}(x)$.
(b) Suppose f^{\prime} is increasing. Show that f^{\prime} is continuous.

Solution. (a). Let $x>c \in I$. Then $f(x)-f(c)=f^{\prime}(\xi(x))(x-c)$ where $\xi(c) \in(c, x)$. Then $f^{\prime}(\xi(x))=$ $\frac{f(x)-f(c)}{x-c}$. Now we consider $x \rightarrow c^{+}$on both side. For the right expression, $\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)$ as f is differentiable at c. For ther left expression, we have to show that $\lim _{x \rightarrow c^{+}} f^{\prime}(\xi(x))=\lim _{x \rightarrow c^{+}} f(x)$. Write $L:=\lim _{x \rightarrow c^{+}} f(x)$. Let $\epsilon>0$. Then there exists $\delta>0$ such that $x-c<\delta$ would imply $|f(x)-L|<\epsilon$. Note that if $x-c<\delta$ then $\xi(x)-c<x-c<\delta$. In particular, we have $|f(\xi(x))-L|<\epsilon$. It follows that $\lim _{x \rightarrow c^{+}} f^{\prime}(\xi(x))=L$.
(b). First note that clearly part (a) is still true if we replace "right" by "left". Note that an increasing function on I has both left and right limits at all points on I by considering supremums and infimums. It follows that if f^{\prime} is increasing then f^{\prime} is both left and right continuous at all points. In particular, f is continuous at all points.
2. (Modified) Suppose $f: I \rightarrow \mathbb{R}$. We say that f is locally strictly increasing at $c \in I$ if there exists $r>0$ such that f is strictly increasing on $B_{r}(c) \subset I$. Suppose f is differentiable such that f^{\prime} is continuous, i.e. $f \in C^{1}(I)$.
(a) Show that if $f^{\prime}(c)>0$ then f is locally strictly increasing at c.
(b) Is the converse of the above true? Prove your assertion.
(c) Show that if f is locally increasing at c, that is, f is increasing on $B_{r}(c)$ for some $r>0$ (with partial inequality), then $f^{\prime}(c) \geq 0$.
(d) Suppose $f^{\prime}(c) \geq 0$. Is it true that f is locally increasing at c ? Prove your assertion.
(e) Suppose now f is differentiable but f^{\prime} may not be continuous. Do statements in (a) - (d) still hold or not?

Solution. (a). Note $f^{\prime}>0$ on $B_{r}(c)$ for some $r>0$ by continuity. Hence the result follows from MVT on $B_{r}(c)$. (b) is not by considering $f(x):=x^{3}$ as in the first page. (c). It is easy to see that $\frac{f(x)-f(c)}{x-c} \geq 0$ on $x \in B_{r}(c) \backslash\{c\}$. The result follows by taking limit. (d). It is not true. Consider $f(x)=x^{2}$ then $f^{\prime}(0)=0$ but f is not locally increasing at 0 .
(e). The same proof and examples apply for (b), (c), (d). For (a), the function $g(x):=x+2 x^{2} \sin (1 / x)$ for $x \neq 0$ and $g(0)=0$ gives a counter example. (cf. textbook P. 179 Q10)
3. Let $f: I \rightarrow \mathbb{R}$ be a function. We say that f has the Intermediate Value Property if for all $x, y \in I$ such that $f(x)<f(y)$ and for all $t \in[f(x), f(y)]$, there exists $z \in[x, y]$ or $z \in[y, x]$ such that $f(z)=t$.
(a) Show that if f is a continuous function, then f has the Intermediate Value Property.
(b) Suppose f is differentiable on I. Suppose further that $x<y \in I$ such that $f^{\prime}(x)<0<f^{\prime}(y)$. Show that there exists $z \in(x, y)$ such that $f^{\prime}(z)=0$.
(c) Suppose f is differentiable. Show that f^{\prime} has the Intermediate Value Property.
(d) Find a non-continuous function that has the Intermediate Value Property.

Solution. Read the Darboux's Theorem in textbook for details. It is interesting to note that there exists a function that is nowhere continuous but satisfy the Intermediate Value Property. See the Wikipage of the Conway Base 13 function.
4. Let $f:[0, \infty)$ be a function. Let $t>0$. We call a finite list of points $\left\{a_{i}\right\}_{i=-0}^{n}$ a partition of $[0, t]$ if $0=a_{0}<a_{1}<\cdots<a_{n}:=t$. We define

$$
V_{f}(t):=V([0, t]):=\sup \left\{\sum_{i=1}^{n}\left|f\left(a_{i}\right)-f\left(a_{i-1}\right)\right|:\left\{a_{i}\right\}_{i=0}^{n} \text { is a partition of }[0, t]\right\}
$$

Note that $V_{f}(t) \in[0, \infty]$ can take value $+\infty$. We call f to be of finite variation if $V_{f}(t)<\infty$ for all $t \geq 0$.
(a) Suppose $f \in \mathcal{C}^{1}([0, \infty)$. Show that f is of finite variation.
(b) Suppose $f \in \mathcal{C}^{1}([0, \infty)$. Show that f is the sum of two monotone functions.
(Hint: Show that $t \mapsto V_{f}(t)$ is an increasing function on $[0, \infty)$).
Solution. (a). Use the fact that f^{\prime} is continuous (by definition) on $[0, t]$ for $t>0$ and so f^{\prime} is bounded on $[0, t]$. Therefore f is Lipschitz on $[0, t]$. Then one can proceed by using the triangle inequality.
(b). The decomposition $f(t)=V_{f}(t)+\left(f-V_{f}\right)(t)$ is the required sum. Note that $V_{f}(t)$ and $\left(f-V_{f}\right)(t):=$ $f(t)-V_{f}(t)$ are both monotone.
5. Let $f: I \rightarrow \mathbb{R}$ be a function.
(a) Show that f is convex if and only if for all finite list $\left\{\lambda_{i}\right\}_{i=1}^{n} \subset[0,1]$ and $\left\{x_{i}\right\}_{i=1}^{n} \subset I$ such that $\sum_{i=1}^{n} \lambda_{i}=1$, we have

$$
f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)
$$

(b) Show that for all $n \in \mathbb{N}$ and $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}_{>0}$. We have $\left(x_{1} \cdots x_{n}\right)^{1 / n} \leq \frac{x_{1}+\cdots+x_{n}}{n}$

Solution. (a). By a standard induction argument.
(b). Note that e^{x} is convex by the second derivative test. Write $x_{i}=e^{\log \left(x_{i}\right)}$ and $\lambda_{i}:=1 / n$ for all $i=1, \cdots, n$ and $n \in \mathbb{N}$. Then apply part (a) on the convexity of e^{x}.

