2021 - 2022 MATH2068 Tutorial 1 - Introduction to Differentiability (Suggested Solutions in Brief)

Unless otherwise specified, I C R is an open interval.

Definition 1.1. Let f : I — R be a function.

e We say that f is differentiable at ¢ € I if f/(c) := lim M

€ R exists. In this case, we call f(c)
Tr—c X — C

the derivative of f at ¢

e We say that f is differentiable on I if f is differentiable at all ¢ € I. In that case we call f': I — R the
derivative of f over I.

Practice Lv 1

1. Let f: I — R be differentiable at ¢ € I. Show that f is continuous at c.
Solution. Let y # c € I. Then f(y) = M('y —¢) + f(c). Tt follows that

lim f(y) = lim M lim(y — ¢) + lim f(c) = f'(c) - 0+ f(c) = f(c)
y—c

y—c y—c y—c y—c

Since c is clearly a cluster point of I, f is continuous at c.

2. Let f: I — R be a function. Show that the following are equivalent:

i. f is differentiable at c € T

ii. There exists r > 0 and a function ¢ : (¢ — r,c¢+r) C I — R such that ¢ is continuous at ¢ and

f(x) = fle) = o(z)(x — ¢)
for all z € (¢ —r,c+r). We call such ¢ to be locally defined at c.
Solution. (i)=-(ii). Define ¢ : I — R by ¢(z) := w for x # ¢ and ¢(c) := f'(c). Then ¢ clearly
€ B,

satisfies the required condition. (ii)=-(i). Suppose such ¢ exists. Then for x € B,(c)\{c} we have

_ fle)=f(c
)7 r—C

o(x ). Derivative of f at ¢ exists due to the continuity of ¢ at c.

3. Let f,g: I — R be differentiable at ¢ € I. Show that f + g and fg are differentiable at ¢

(a) by definition, and
(b) by Q2

Solution. See Lecture Note.

4. Let f,g: I — I be two functions such that f is differentiable at ¢ € I and g is differentiable at f(c) € I.
Show that g o f is differentiable at c.

Solution. See Lecture Note.
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Practice Lv 2
a?sin(1/x?) x#0
0 x=0

5. (P.171 Q10) Let g : R — R be defined by g(z) := { . Show that

(a) g is a differentiable function on R.
(b) ¢’ is not bounded on [—1,1]

(You may assume the differentiability of sine functions)
Solution. See HW1 solution.

6. Let f : R — R be defined by f(z) := [sin(x)|. Find all points at which f is not differentiable. Explain

your answer.

Solution. f is not differentiable precisely at its zeros, that is, at * = nm where n € Z. First we show
that f is differentiable at x if f(x) # 0, that is, if f(x) > 0. Note by continuity of f (as f is composition
of two continuous functions) we have f > 0 on B, (z) for some > 0. Therefore f(t) = sin(t) on B,(x).

The differentiability follows from that of the sine function.
Now suppose f(z) = 0. Then # = nz for some n € Z. Note that for h > 0, we have

‘s”‘("}:’*h)‘ — ‘5‘”}5}”‘ = |S”‘]]E‘h>‘ @ As limy,_0 “n}<h) =1 but limy_,g ‘}‘ does not exist. It follows that
limy, o W does not exist. (Otherwise, contradiction arises as \th = f<"1"+”'}37'f<""') \311‘1/2‘}1)\)

f(z4+h)—f(x) _
h

7. Recall that f : I — R is said to be Lipschitz function if there exists L > 0 such that |f(x) — f(y)| <

L|z —y| for all x,y € R. Let f: I — R be a function.
(a) Suppose f is Lipschitz and differentiable. Show that f’ is bounded.

(b) Can the Lipschitz assumption in part (a) be omitted? Explain your answer and give counter-

examples if necessary.

Solution. (a). Note that F@=tWl < [, for all x # y where L is a Lipschitz constant. Then it is clear

|z—y|
that |f/| < L (b). Yes. Consider f(z) = 2% on R. Then f’ exists but is not bounded.

8. Let f: I — R where I is bounded. Suppose f is differentiable and f’ is uniformly continuous. Show

that f is Lipschitz.
(Hint: Show that f’ is bounded first.)

Solution. Note that I is bounded and uniform continuity preserves boundedness, so f’ is bounded.
Then it follows from Mean Value Theorem that f is Lipschitz as |f(z) — f(y)] = |f'(¢)|]|lx —y| <

sup f'(I)|x — y| where ¢ € (z,y) for all z < y.
9. Let f : R — R be a convex function, that is, for all z,y € R and ¢ € [0, 1], we have
flte+ (1 —t)y) <tf(zx)+ (1 —1)f(y)
(a) Let x,y,z € R be such that < y < z. Show that we have
fl@) = fly) _ fx) = f(2)

xr—y - r—z

(b) Show that for all ¢ € R the right limit lim,_, .+ f@)=fc) f (©) exists; in particular it does not diverge to

xr—
infinities.

(c) Show that lim,_,. f(x) = f(c) for all ¢ € R.

(Hint: It is better for you to first think about the meaning (e.g. graphically) of a convex function.)

Solution. (a). We first write y = tx + (1 —t)z for some ¢ € [0,1]. It follows that ¢t = == € [0,1] as
x <y < z. By convexity we then have f(y) < tf(z) + (1 —t)f(2). Rearranging the terms gives the

required inequality.

(b). Fix ¢ € R and define ¢.(y) := M for all y € (¢,00). Part (a) showed that ¢. in increasing.

c—
It is not hard to see that ¢, is bounded bdow by like M
follows by considering infimum that lim,_, .+ ¢.(y) exists, ‘which is the required limit.

where t can be any number < c. It then

(c). Note that f(y) = ¢c(y)(y—c)+ f(c) for all y > c. Hence lim,_,.+ f(y) = f(c) by part (b). Therefore
f is right continuous at ¢. Slightly modifying (a) and (b) gives that f is left continuous at ¢. Hence f is

continuous at c¢. This shows that every convex function is continuous.
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