
2021 - 2022 MATH2068 Tutorial 1 - Introduction to Differentiability (Suggested Solutions in Brief)

Unless otherwise specified, I ⊂ R is an open interval.

Definition 1.1. Let f : I → R be a function.

• We say that f is differentiable at c ∈ I if f ′(c) := lim
x→c

f(x)− f(c)

x− c
∈ R exists. In this case, we call f ′(c)

the derivative of f at c

• We say that f is differentiable on I if f is differentiable at all c ∈ I. In that case we call f ′ : I → R the
derivative of f over I.

Practice Lv 1

1. Let f : I → R be differentiable at c ∈ I. Show that f is continuous at c.

Solution. Let y ̸= c ∈ I. Then f(y) = f(y)−f(c)
y−c (y − c) + f(c). It follows that

lim
y→c

f(y) = lim
y→c

f(y)− f(c)

y − c
lim
y→c

(y − c) + lim
y→c

f(c) = f ′(c) · 0 + f(c) = f(c)

Since c is clearly a cluster point of I, f is continuous at c.

2. Let f : I → R be a function. Show that the following are equivalent:

i. f is differentiable at c ∈ I

ii. There exists r > 0 and a function ϕ : (c− r, c+ r) ⊂ I → R such that ϕ is continuous at c and

f(x)− f(c) = ϕ(x)(x− c)

for all x ∈ (c− r, c+ r). We call such ϕ to be locally defined at c.

Solution. (i)⇒(ii). Define ϕ : I → R by ϕ(x) := f(x)−f(c)
x−c for x ̸= c and ϕ(c) := f ′(c). Then ϕ clearly

satisfies the required condition. (ii)⇒(i). Suppose such ϕ exists. Then for x ∈ Br(c)\{c} we have

ϕ(x) = f(x)−f(c)
x−c . Derivative of f at c exists due to the continuity of ϕ at c.

3. Let f, g : I → R be differentiable at c ∈ I. Show that f + g and fg are differentiable at c

(a) by definition, and

(b) by Q2

Solution. See Lecture Note.

4. Let f, g : I → I be two functions such that f is differentiable at c ∈ I and g is differentiable at f(c) ∈ I.
Show that g ◦ f is differentiable at c.

Solution. See Lecture Note.
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5. (P.171 Q10) Let g : R → R be defined by g(x) :=

{
x2 sin

(
1/x2

)
x ̸= 0

0 x = 0
. Show that

(a) g is a differentiable function on R.
(b) g′ is not bounded on [−1, 1]

(You may assume the differentiability of sine functions)

Solution. See HW1 solution.

6. Let f : R → R be defined by f(x) := |sin(x)|. Find all points at which f is not differentiable. Explain
your answer.

Solution. f is not differentiable precisely at its zeros, that is, at x = nπ where n ∈ Z. First we show
that f is differentiable at x if f(x) ̸= 0, that is, if f(x) > 0. Note by continuity of f (as f is composition
of two continuous functions) we have f > 0 on Br(x) for some r > 0. Therefore f(t) = sin(t) on Br(x).
The differentiability follows from that of the sine function.

Now suppose f(x) = 0. Then x = nπ for some n ∈ Z. Note that for h > 0, we have f(x+h)−f(x)
h =

|sin(nπ+h)|
h = |sin(h)|

h = |sin(h)|
|h|

|h|
h . As limh→0

sin(h)
h = 1 but limh→0

|h|
h does not exist. It follows that

limh→0
f(x+h)−f(x)

h does not exist. (Otherwise, contradiction arises as |h|
h = f(x+h)−f(x)

h
|h|

|sin(h)| )

7. Recall that f : I → R is said to be Lipschitz function if there exists L > 0 such that |f(x)− f(y)| ≤
L|x− y| for all x, y ∈ R. Let f : I → R be a function.

(a) Suppose f is Lipschitz and differentiable. Show that f ′ is bounded.

(b) Can the Lipschitz assumption in part (a) be omitted? Explain your answer and give counter-
examples if necessary.

Solution. (a). Note that |f(x)−f(y)|
|x−y| ≤ L for all x ̸= y where L is a Lipschitz constant. Then it is clear

that |f ′| ≤ L (b). Yes. Consider f(x) = x2 on R. Then f ′ exists but is not bounded.

8. Let f : I → R where I is bounded. Suppose f is differentiable and f ′ is uniformly continuous. Show
that f is Lipschitz.
(Hint: Show that f ′ is bounded first.)

Solution. Note that I is bounded and uniform continuity preserves boundedness, so f ′ is bounded.
Then it follows from Mean Value Theorem that f is Lipschitz as |f(x)− f(y)| = |f ′(c)||x− y| ≤
sup f ′(I)|x− y| where c ∈ (x, y) for all x < y.

9. Let f : R → R be a convex function, that is, for all x, y ∈ R and t ∈ [0, 1], we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

(a) Let x, y, z ∈ R be such that x < y < z. Show that we have

f(x)− f(y)

x− y
≤ f(x)− f(z)

x− z

(b) Show that for all c ∈ R the right limit limx→c+
f(x)−f(c)

x−c exists; in particular it does not diverge to
infinities.

(c) Show that limx→c f(x) = f(c) for all c ∈ R.

(Hint: It is better for you to first think about the meaning (e.g. graphically) of a convex function.)

Solution. (a). We first write y = tx + (1 − t)z for some t ∈ [0, 1]. It follows that t = y−z
x−z ∈ [0, 1] as

x < y < z. By convexity we then have f(y) ≤ tf(x) + (1 − t)f(z). Rearranging the terms gives the
required inequality.

(b). Fix c ∈ R and define ϕc(y) :=
f(c)−f(y)

c−y for all y ∈ (c,∞). Part (a) showed that ϕc in increasing.

It is not hard to see that ϕc is bounded below by like f(c)−f(t)
c−t where t can be any number < c. It then

follows by considering infimum that limy→c+ ϕc(y) exists, which is the required limit.
(c). Note that f(y) = ϕc(y)(y−c)+f(c) for all y > c. Hence limy→c+ f(y) = f(c) by part (b). Therefore
f is right continuous at c. Slightly modifying (a) and (b) gives that f is left continuous at c. Hence f is
continuous at c. This shows that every convex function is continuous.
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