Unless otherwise specified, $I \subset \mathbb{R}$ is an open interval.
Definition 1.1. Let $f: I \rightarrow \mathbb{R}$ be a function.

- We say that f is differentiable at $c \in I$ if $f^{\prime}(c):=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \in \mathbb{R}$ exists. In this case, we call $f^{\prime}(c)$ the derivative of f at c
- We say that f is differentiable on I if f is differentiable at all $c \in I$. In that case we call $f^{\prime}: I \rightarrow \mathbb{R}$ the derivative of f over I.

Practice Lv 1

1. Let $f: I \rightarrow \mathbb{R}$ be differentiable at $c \in I$. Show that f is continuous at c.
2. Let $f: I \rightarrow \mathbb{R}$ be a function. Show that the following are equivalent:
i. f is differentiable at $c \in I$
ii. There exists $r>0$ and a function $\phi:(c-r, c+r) \subset I \rightarrow \mathbb{R}$ such that ϕ is continuous at c and

$$
f(x)-f(c)=\phi(x)(x-c)
$$

for all $x \in(c-r, c+r)$. We call such ϕ to be locally defined at c.
3. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable at $c \in I$. Show that $f+g$ and $f g$ are differentiable at c
(a) by definition, and
(b) by Q2
4. Let $f, g: I \rightarrow I$ be two functions such that f is differentiable at $c \in I$ and g is differentiable at $f(c) \in I$. Show that $g \circ f$ is differentiable at c.

Practice Lv 2

5. (P. 171 Q10) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x):=\left\{\begin{array}{ll}x^{2} \sin \left(1 / x^{2}\right) & x \neq 0 \\ 0 & x=0 .\end{array}\right.$. Show that
(a) g is a differentiable function on \mathbb{R}.
(b) g^{\prime} is not bounded on $[-1,1]$
(You may assume the differentiability of sine functions)
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x):=|\sin (x)|$. Find all points at which f is not differentiable. Explain your answer.
7. Recall that $f: I \rightarrow \mathbb{R}$ is said to be Lipschitz function if there exists $L>0$ such that $|f(x)-f(y)| \leq$ $L|x-y|$ for all $x, y \in \mathbb{R}$. Let $f: I \rightarrow \mathbb{R}$ be a function.
(a) Suppose f is Lipschitz and differentiable. Show that f^{\prime} is bounded.
(b) Can the Lipschitz assumption in part (a) be omitted? Explain your answer and give counterexamples if necessary.
8. Let $f: I \rightarrow \mathbb{R}$ where I is bounded. Suppose f is differentiable and f^{\prime} is uniformly continuous. Show that f is Lipschitz.
(Hint: Show that f^{\prime} is bounded first.)
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, that is, for all $x, y \in \mathbb{R}$ and $t \in[0,1]$, we have

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

(a) Let $x, y, z \in \mathbb{R}$ be such that $x<y<z$. Show that we have

$$
\frac{f(x)-f(y)}{x-y} \leq \frac{f(x)-f(z)}{x-z}
$$

(b) Show that for all $c \in \mathbb{R}$ the right $\operatorname{limit}^{\lim }{ }_{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}$ exists; in particular it does not diverge to infinities.
(c) Show that $\lim _{x \rightarrow c} f(x)=f(c)$ for all $c \in \mathbb{R}$.
(Hint: It is better for you to first think about the meaning (e.g. graphically) of a convex function.)

